Beazer

BEAZER EAST, INC. C/O THREE RIVERS MANAGEMENT, INC. ONE OXFORD CENTRE, SUITE 3000, PITTSBURGH, PA 15219-6401

June 3, 2010

Ms. Carolyn Bury U.S. Environmental Protection Agency, Region V 77 West Jackson Boulevard Mail Code DE-9J Chicago, IL 60604-3590

Re: Former Koppers Wood-Treating Site – Carbondale, Illinois March 2010 Investigation Analytical Data Submittal

Dear Ms. Bury:

In accordance with a scope of work that was approved by the USEPA on March 24, 2010 and finalized on March 25, 2010, Beazer conducted sampling in Evaluation Areas (EAs) 1, 2, 3, 4, 5 and 6 at the Former Koppers Wood-Treating Site in Carbondale, Illinois between March 29 and 31, 2010. The purpose of this letter is to transmit the validated analytical data associated with the March 2010 sampling to the USEPA. The following are attached to this letter:

- Attachment 1 Validated Analytical Data Summary Table
- Attachment 2 Sample Location Maps
- Attachment 3 Data Validation Reports
- Attachment 4 Validated Laboratory Data Sheets

Please feel contact me at 412-208-8867 if you have any questions or comments regarding this submittal.

Sincerely,

Michael Slenska, P.E. Environmental Manager

Enclosure

cc: James Moore, IEPA

Allen Debus, USEPA Jeffrey Holden, ARCADIS Paul Anderson, ARCADIS David Bessingpas, ARCADIS

Writer's Direct Dial: 412/208-8867

Attachment 1

Validated Analytical Data Summary Table

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A1-35	A1-36	A1-37	A1-38	A1-39
Depth Interval (in.):			PRGs		A PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/30/10	03/30/10	03/30/10	03/30/10	03/30/10
PCDDs/PCDFs										
1,2,3,4,6,7,8-HpCDD	ug/kg					0.375	0.341	10.6 [15.4 EJ]	0.225	2.51
1,2,3,4,6,7,8-HpCDF	ug/kg					0.0423	0.0798	3.29 [5.4 EJ]	0.0231	0.402
1,2,3,4,7,8,9-HpCDF	ug/kg					0.00198 J	0.00644	0.347 [0.558]	0.00201 J	0.0285
1,2,3,4,7,8-HxCDD	ug/kg					0.00518	0.00188 J	0.0471 J [0.0668]	0.00232 J	0.0326
1,2,3,4,7,8-HxCDF	ug/kg					0.00257 J	0.00243 J	0.0933 [0.137]	0.00197 J	0.0162
1,2,3,6,7,8-HxCDD	ug/kg					0.0113	0.0107	0.351 [0.542]	0.00594	0.0749
1,2,3,6,7,8-HxCDF	ug/kg					0.00118 J	0.000971 UX	0.0394 J [0.0364]	0.000606 J	0.00729
1,2,3,7,8,9-HxCDD	ug/kg					0.00834	0.00379 J	0.0669 [0.114]	0.00357 J	0.0519
1,2,3,7,8,9-HxCDF	ug/kg					0.00149 U	0.00087 U	0.0152 U [0.0231]	0.000757 U	0.00324 J
1,2,3,7,8-PeCDD	ug/kg					0.00146 UX	0.000697 UX	0.0127 J [0.0165]	0.00135 J	0.0128
1,2,3,7,8-PeCDF	ug/kg					0.000705 UX	0.000948 U	0.00544 U [0.00287 J]	0.00066 U	0.00116 J
2,3,4,6,7,8-HxCDF	ug/kg					0.00168 UX	0.00191 J	0.0969 [0.128]	0.0013 J	0.0127
2,3,4,7,8-PeCDF	ug/kg					0.00169 J	0.000844 U	0.00611 UX [0.0101]	0.0012 J	0.0045 J
2,3,7,8-TCDD	ug/kg					0.000607 U	0.000593 J	0.00212 UX [0.00191]	0.000672 J	0.00134 UX
2,3,7,8-TCDF	ug/kg					0.000831 UX	0.000367 U	0.00252 U [0.00144]	0.000332 U	0.000646 J
37CI-2,3,7,8-TCDD	ug/kg					0.13	0.138	1.68 [0.142]	0.138	0.135
OCDD	ug/kg					12.5 EJ	8.83 EJ	86 [146 EJ]	5.45	30.8 EJ
OCDF	ug/kg					0.167	0.56	27.2 [41.3 EJ]	0.111	1.96
Total HpCDD	ug/kg					0.843	0.659	20.5 [27.1 J]	0.514	4.38
Total HpCDF	ug/kg					0.163	0.466	29.5 [52.2 J]	0.122	1.78
Total HxCDD	ug/kg					0.124	0.0654	2.04 [2.87]	0.115	0.468
Total HxCDF	ug/kg					0.0491	0.0821	4.97 [7.89 PJ]	0.036	0.361
Total PeCDD	ug/kg					0.0208	0.0107	0.0506 [0.123]	0.0144	0.0648
Total PeCDF	ug/kg					0.0119	0.004	0.178 [0.172 PJ]	0.00603	0.0407
Total TCDD	ug/kg					0.0103	0.00267	0.0339 [0.0598]	0.00788	0.0114
Total TCDF	ug/kg					0.0031	0.00076	0.0236 [0.0675]	0.0038	0.0118
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.0114	0.00975	0.258 [0.396]	0.00812	0.0734
SVOCs			l							
Pentachlorophenol	mg/kg		I			0.048 U	0.022 J	8 DJ	0.033 J	0.26
Acenaphthene	mg/kg					0.003 J	0.0042 J	0.28 DJ	0.019 J	0.3
Acenaphthylene	mg/kg					0.019	0.023	6.4 DJ	0.33	0.13
Anthracene	mg/kg					0.02	0.034	9.6 DJ	0.42	0.2
Benzo(a)anthracene	mg/kg					0.032	0.046	31 DJ	1.3	1
Benzo(a)pyrene	mg/kg					0.04	0.045	17 DJ	1.1	0.29
Benzo(b)fluoranthene	mg/kg					0.073	0.13	52 DJY	2.9 JY	0.51 JY
Benzo(ghi)perylene	mg/kg					0.036	0.048	14 DJ	0.83	0.11
Benzo(k)fluoranthene	mg/kg					0.037	0.057	46 DJY	2.7 JY	0.46 JY
Chrysene	mg/kg					0.056	0.074	37 DJ	1.9	1.5
Dibenzo(a,h)anthracene	mg/kg					0.0094 J	0.018	5.2 DJ	0.24	0.12
Fluoranthene	mg/kg					0.047	0.056	85 DJ	1.8	1.5
Fluorene	mg/kg					0.0097 U	0.000 J	0.59 DJ	0.031	0.04 U
Indeno(1,2,3-cd)pyrene	mg/kg					0.032	0.053	14 DJ	0.8	0.077
Naphthalene	mg/kg					0.0077 J	0.0033 0.0072 J	0.84 DJ	0.044	0.077
Phenanthrene	mg/kg					0.0077 3	0.00723	12 DJ	0.044	3.7
Pyrene	mg/kg					0.029	0.053	58 DJ	1.8	0.78
Total PAHs	mg/kg					0.481 J	0.033 0.678 J	343 DJ	13.7 J	10.4
Metals	mg/kg	<u> </u>	I		I	1 0.7010	0.0700	070 00	10.7 0	10.4
Arsenic	ma/ka	I	I	I	I	10.5	13.5	9	9.3	5.2
	mg/kg							-		
Conner	mg/kg					15.5 J	19.4 J	15.3 J	15.8 J	11.9 J
Copper	mg/kg					18.4	21.3	17.6	19	12.5
Miscellaneous	c: /l -	ı	ı	ı	ſ	N 1 A	N/A	N I A	I NIA	N/A
Total Organic Carbon	mg/kg					NA	NA	NA	NA	NA

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A1-40	A1-41	A1-42	A1-43	A1-44
Depth Interval (in.)			A PRGs		PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected	Units	R	C/I	R	C/I	03/30/10	03/30/10	03/30/10	03/30/10	03/30/10
PCDDs/PCDFs										
1,2,3,4,6,7,8-HpCDD	ug/kg					0.207	2.14	0.16	0.0791	0.67
1,2,3,4,6,7,8-HpCDF	ug/kg					0.0318	0.546	0.016	0.00572	0.13
1,2,3,4,7,8,9-HpCDF	ug/kg					0.00206 J	0.0225	0.000888 UX	0.000887 U	0.0148
1,2,3,4,7,8-HxCDD	ug/kg					0.00442 U	0.0347	0.00189 UX	0.00189 U	0.00646
1,2,3,4,7,8-HxCDF	ug/kg					0.00197 U	0.0138	0.0012 J	0.0008 U	0.0285
1,2,3,6,7,8-HxCDD	ug/kg					0.00509	0.0313	0.00418 J	0.00255 U	0.0242
1,2,3,6,7,8-HxCDF	ug/kg					0.00177 U	0.0171	0.00103 U	0.000404 U	0.00722
1,2,3,7,8,9-HxCDD	ug/kg					0.00475 U	0.073	0.00348 J	0.00189 U	0.0112
1,2,3,7,8,9-HxCDF	ug/kg					0.00138 U	0.00226 J	0.000783 U	0.000685 U	0.00774
1,2,3,7,8-PeCDD	ug/kg					0.0029 UX	0.0133	0.000882 UX	0.000664 U	0.00304 J
1,2,3,7,8-PeCDF	ug/kg					0.000547 U	0.00108 UX	0.00084 U	0.000637 U	0.00227 J
2,3,4,6,7,8-HxCDF	ug/kg					0.00188 U	0.027	0.00114 J	0.000498 U	0.0123
2,3,4,7,8-PeCDF	ug/kg					0.000633 J	0.00435 J	0.000778 UX	0.000619 U	0.0149
2,3,7,8-TCDD	ug/kg					0.00805	0.000742 J	0.000316 UX	0.000334 UX	0.00049 U
2,3,7,8-TCDF	ug/kg					0.000478 UX	0.000798 U	0.000622 U	0.00049 U	0.000589 J
37CI-2,3,7,8-TCDD	ug/kg					0.139	0.132	0.139	0.125	0.133
OCDD	ug/kg					6.43	28.3 EJ	9.28 EJ	4	10.3 EJ
OCDF	ug/kg					0.168	1.14	0.0588	0.0217	0.596
Total HpCDD	ug/kg	-				0.521	3.97	0.378	0.238	1.68
Total HpCDF	ug/kg					0.149	1.5	0.0563	0.0227	0.666
Total HxCDD	ug/kg	-				0.117	0.563	0.0468	0.023	0.205
Total HxCDF	ug/kg					0.0301	0.521	0.0163	0.00445	0.255
Total PeCDD	ug/kg					0.0649	0.0614	0.00657	0.00234 UX	0.0307
Total PeCDF	ug/kg					0.00569	0.0926	0.0042	0.000446 UX	0.0806
Total TCDD	ug/kg					0.022	0.000742	0.0027	0.000334 UX	0.00479
Total TCDF	ug/kg					0.00398	0.012	0.00322	0.00049 U	0.00731
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.0131	0.0712	0.00556	0.00205	0.0288
SVOCs										
Pentachlorophenol	mg/kg					0.023 J	0.79 UJ	0.093 U	0.2 U	0.021 J [0.04 J]
Acenaphthene	mg/kg					0.0098 J	0.9 DJ	0.019 U	0.0083 J	0.0097 J [0.0069 J]
Acenaphthylene	mg/kg					0.15	0.056 DJ	0.0039 J	0.016 J	0.062 [0.067]
Anthracene	mg/kg					0.15	1.8 DJ	0.0045 J	0.013 J	0.11 [0.087]
Benzo(a)anthracene	mg/kg					0.4	6.4 DJ	0.011 J	0.029 J	0.24 [0.17]
Benzo(a)pyrene	mg/kg					0.3	6.4 DJ	0.0096 J	0.027 J	0.17 [0.16]
Benzo(b)fluoranthene	mg/kg					0.56	7.5 DJ	0.019	0.071	0.31 [0.29]
Benzo(ghi)perylene	mg/kg					0.2	4.8 DJ	0.0079 J	0.028 J	0.12 [0.14]
Benzo(k)fluoranthene	mg/kg					0.56	4.9 DJ	0.0079 J	0.035 J	0.14 [0.18]
Chrysene	mg/kg					0.56	7.2 DJ	0.012 J	0.063	0.28 [0.24]
Dibenzo(a,h)anthracene	mg/kg					0.07	1.1 DJ	0.019 U	0.041 U	0.041 [0.046]
Fluoranthene	mg/kg					0.75	25 DJ	0.019	0.26	0.63 [0.39]
Fluorene	mg/kg					0.018 J	0.52 DJ	0.003 J	0.0097 J	0.0086 J [0.0086 J]
Indeno(1,2,3-cd)pyrene	mg/kg					0.2	4.4 DJ	0.0089 J	0.026 J	0.12 [0.14]
Naphthalene	mg/kg					0.034	0.12 DJ	0.0025 J	0.041 U	0.12 [0.086]
Phenanthrene	mg/kg					0.094	12 DJ	0.015 J	0.21	0.48 [0.23]
Pyrene	mg/kg					0.6	13 DJ	0.013 J	0.12 J	0.38 [0.26]
Total PAHs	mg/kg					4.66 J	96.1 J	0.137 J	0.916 J	3.22 J [2.5 J]
Metals			•	•	•					
Arsenic	mg/kg					10.3	11.5	8.7	14.8	11.6 [14.1]
Chromium	mg/kg					17.8	19.6	17.1	21.9	18.6 [14.5]
Copper	mg/kg					40.1	17	17.9	20.9	12.5 [12.2]
Miscellaneous	J 3		1	ı	ı	<u> </u>		_		
Total Organic Carbon	mg/kg				l	NA	NA	NA	8,960	24,300 [17,400]
	9,9		1	1	<u> </u>	1,		, .	2,500	,000 [17,100]

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A1-45	A1-46	A1-47	A1-48	A2-11	A2-12
Depth Interval (in.):		USEPA	A PRGs		PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/30/10	03/30/10	03/30/10	03/30/10	03/29/10	03/29/10
PCDDs/PCDFs											
1,2,3,4,6,7,8-HpCDD	ug/kg					0.0552	0.0836	0.226	6.13 EJ	111 D	148 EJ
1,2,3,4,6,7,8-HpCDF	ug/kg					0.00536	0.00981	0.067	0.98	12.1 EJ	24.7 EJ
1,2,3,4,7,8,9-HpCDF	ug/kg					0.000801 U	0.00128 U	0.00848	0.0878	0.968	2
1,2,3,4,7,8-HxCDD	ug/kg					0.00154 U	0.00396 U	0.00166 UX	0.0078	0.805	1.28
1,2,3,4,7,8-HxCDF	ug/kg					0.000751 J	0.00175 J	0.0325	0.222	0.675	1.27
1,2,3,6,7,8-HxCDD	ug/kg					0.00184 U	0.00381 U	0.00938	0.11 J	2.01	3.98
1,2,3,6,7,8-HxCDF	ug/kg					0.000554 U	0.000673 U	0.00726	0.0407	0.154	0.289 PJ
1,2,3,7,8,9-HxCDD	ug/kg					0.000943 J	0.00421 U	0.00339 U	0.0205	0.68	1.08
1,2,3,7,8,9-HxCDF	ug/kg					0.000892 U	0.00102 U	0.00932	0.0463	0.159	0.255
1,2,3,7,8-PeCDD	ug/kg					0.000967 U	0.000984 U	0.0012 U	0.00263 J	0.114	0.173
1,2,3,7,8-PeCDF	ug/kg					0.000719 U	0.00116 U	0.00218 J	0.0096 J	0.0378	0.0491
2,3,4,6,7,8-HxCDF	ug/kg					0.000719 U	0.00146 U	0.00982	0.0535	0.311	0.606
2,3,4,7,8-PeCDF	ug/kg					0.000676 U	0.00140 C	0.0286	0.0969 J	0.221	0.302
2,3,7,8-TCDD	ug/kg					0.000676 UX	0.00061 U	0.000425 U	0.000476 U	0.00963	0.00988
2,3,7,8-TCDF	ug/kg					0.000070 UX	0.00001 U	0.000425 UX	0.000470 0	0.00903	0.009877
37CI-2,3,7,8-TCDD	ug/kg					0.000477 0	0.000488 0	0.000716 07	0.00191	0.00919	0.00877
OCDD	ug/kg					7.63	4.37	4.97	89.1 EDJ	573 EDJ	
OCDF	ug/kg					0.0207	0.0356	0.263	5.62	61.3 EJ	119 EJ
Total HpCDD								0.203	12.3 J	279 D	355 J
	ug/kg					0.123 0.0208	0.185 0.0346	0.472	5.98	73.1 J	141 J
Total HpCDF	ug/kg						0.0346				
Total HxCDD	ug/kg					0.0118		0.0506	0.496 J	25.6	43.8
Total HxCDF	ug/kg					0.000751	0.013	0.202	1.56 J	17.2 PJ	33.2 PJ
Total PeCDD	ug/kg					0.00228	0.00126 U	0.00179	0.0141	2.82	3.35
Total PeCDF	ug/kg					0.000762	0.0013	0.1	0.422 J	1.46 PJ	2.18 PJ
Total TCDD	ug/kg					0.000676 UX	0.000792 U	0.000282 UX	0.00225	0.482	0.4
Total TCDF	ug/kg					0.000841	0.000639 UX	0.00859	0.0238	0.15 PJ	0.204 PJ
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.00307	0.00282	0.0201	0.183	2.1	3.12
SVOCs						•			_		
Pentachlorophenol	mg/kg					0.046 U	0.11 U	0.022 J	0.13 U	3.1	14 DJ
Acenaphthene	mg/kg					0.0092 U	0.0022 J	0.0033 J	0.0071 J	0.093 J	0.35 DJ
Acenaphthylene	mg/kg					0.0028 J	0.015 J	0.036	0.018 J	1.6	8.9 DJ
Anthracene	mg/kg					0.0034 J	0.017 J	0.043	0.03	1.9	11 DJ
Benzo(a)anthracene	mg/kg					0.009 J	0.039	0.09 J	0.089	3.1	19 DJ
Benzo(a)pyrene	mg/kg					0.008 J	0.045 J	0.091 J	0.089	4.2	28 DJ
Benzo(b)fluoranthene	mg/kg	-				0.013	0.076 J	0.16 J	0.15	9.7 JY	47 DJ
Benzo(ghi)perylene	mg/kg					0.006 J	0.035 J	0.069 J	0.082	3.4	21 DJ
Benzo(k)fluoranthene	mg/kg	-				0.006 J	0.026 J	0.072 J	0.046	8.8 JY	22 DJ
Chrysene	mg/kg					0.015	0.055	0.12 J	0.11	4.3	28 DJ
Dibenzo(a,h)anthracene	mg/kg					0.0092 U	0.0082 J	0.023 J	0.021 J	1	6.8 DJ
Fluoranthene	mg/kg					0.023	0.073	0.16	0.2	4.1	14 DJ
Fluorene	mg/kg					0.0092 U	0.0034 J	0.0057 J	0.0058 J	0.11	0.37 DJ
Indeno(1,2,3-cd)pyrene	mg/kg					0.0061 J	0.034 J	0.072 J	0.076	3.3	21 DJ
Naphthalene	mg/kg					0.008 J	0.01 J	0.049	0.02 J	0.18	0.91 DJ
Phenanthrene	mg/kg					0.0097	0.031	0.1	0.1	0.54	1.6 DJ
Pyrene	mg/kg					0.016	0.056	0.12 J	0.13	4.5	19 DJ
Total PAHs	mg/kg					0.126 J	0.526 J	1.21 J	1.17 J	42 J	249 J
Metals	, , ,	1							1		•
Arsenic	mg/kg					12	6.5	17.6	8.4	21.2	44.3
Chromium	mg/kg					20.7	20.1	18.8	18.5	48.9 J	118 J
Copper	mg/kg					23.4	18.6	22.8	23.8	26.8	32.6
Miscellaneous	·5···9		l	<u> </u>	l						, v
Total Organic Carbon	mg/kg		l		l	NA	23,600	13,700	9,500	21,700	20,800
Total Organic Carbon	my/ky					INA	20,000	13,700	3,300	21,100	20,000

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A2-13	A2-14	A2-15	A2-16	A2-17
Depth Interval (in.):		USEPA	A PRGs	USEPA	A PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:		R	C/I	R	C/I	03/29/10	03/29/10	03/29/10	03/29/10	03/29/10
PCDDs/PCDFs										
1,2,3,4,6,7,8-HpCDD	ug/kg					1 [2.57]	296 EJ	79.8 EDJ	252 EJ	181 EDJ
1,2,3,4,6,7,8-HpCDF	ug/kg					0.251 [0.611]	31.6	10.5 EJ	27.9	22.2
1,2,3,4,7,8,9-HpCDF	ug/kg					0.0164 [0.0395]	2.58	1.2	2.47	1.67
1,2,3,4,7,8-HxCDD	ug/kg					0.0132 [0.03]	1.43	0.152	1.09	0.718
1,2,3,4,7,8-HxCDF	ug/kg					0.00839 [0.0218]	0.871	0.733	1.73	0.961
1,2,3,6,7,8-HxCDD	ug/kg					0.029 [0.0726]	6.33	1.82	4.62	3.92
1,2,3,6,7,8-HxCDF	ug/kg					0.00332 J [0.00842]	0.241	0.136	0.352	0.242
1,2,3,7,8,9-HxCDD	ug/kg					0.0125 [0.0308]	2.3	0.355	1.17	1.04
1,2,3,7,8,9-HxCDF	ug/kg					0.00188 J [0.0048 J]	0.142	0.155	0.355	0.198
1,2,3,7,8-PeCDD	ug/kg					0.00363 J [0.00755]	0.237	0.0481	0.133	0.137
1,2,3,7,8-PeCDF	ug/kg					0.00085 UX [0.00292 J]	0.0256 J	0.0257	0.0624	0.0354 J
2,3,4,6,7,8-HxCDF	ug/kg					0.00683 [0.0161]	0.646	0.281	0.653	0.482
2,3,4,7,8-PeCDF	ug/kg					0.00287 J [0.00715]	0.104	0.153	0.332	0.203
2,3,7,8-TCDD	ug/kg					0.00287 3 [0.00713] 0.00048 J [0.000768 J]	0.104	0.0032	0.00664 U	0.203 0.00944 J
2,3,7,8-TCDF	ug/kg					0.00123 [0.00226]	0.00691 U	0.0052	0.00004 U 0.00752 UX	0.00944 3
37Cl-2,3,7,8-TCDD	ug/kg					0.139 [0.135]	1.48	0.00304	1.64	1.63
OCDD	ug/kg ug/kg	-				13.5 EJ [35.1 EJ]	4,850 EDJ	537 EDJ	3,270 EDJ	2,630 EDJ
OCDF	ug/kg					1.35 [3.19]	202 EJ	61.5 D	158 EJ	130 EJ
Total HpCDD				ł		2.02 [5.64]	570 J	235 DJ	757 J	368 J
	ug/kg						248	72.7 J	222	162
Total HpCDF Total HxCDD	ug/kg					1.26 [3.37]	34.4	17.1 17.1	52.2	22.5
	ug/kg					0.28 [0.778]				
Total HxCDF	ug/kg					0.262 [0.729]	38.4 PJ	15.8 PJ	40.3 PJ	24.5 PJ
Total PeCDD	ug/kg					0.108 [0.207]	1.18	0.318	1.71	0.906
Total PeCDF	ug/kg					0.0315 [0.085]	1.26 PJ	0.983 PJ	2.21	1.45
Total TCDD	ug/kg					0.0926 [0.119]	0.118	0.035	0.139	0.122
Total TCDF	ug/kg			0.072		0.0233 [0.0478]	0.159	0.0758 PJ	0.167	0.0938
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.0297 [0.0729]	6.3	1.56	5.08	3.84
SVOCs			1		1			21.51		10.5.1
Pentachlorophenol	mg/kg					0.078 J [0.061 J]	71 DJ	21 DJ	27 DJ	40 DJ
Acenaphthene	mg/kg					0.0064 J [0.033]	0.26 DJ	0.96 DJ	0.69 DJ	0.47 DJ
Acenaphthylene	mg/kg					0.081 J [0.28 J]	6.1 DJ	17 DJ	15 DJ	7.8 DJ
Anthracene	mg/kg					0.091 [0.17 J]	8.4 DJ	24 DJ	27 DJ	12 DJ
Benzo(a)anthracene	mg/kg					0.14 J [0.44 J]	17 DJ	20 DJ	16 DJ	12 DJ
Benzo(a)pyrene	mg/kg					0.18 J [0.57 J]	16 DJ	39 DJ	28 DJ	15 DJ
Benzo(b)fluoranthene	mg/kg					0.4 JY [0.72]	38 DJ	91 DJY	79 DJY	41 DJY
Benzo(ghi)perylene	mg/kg					0.15 J [0.49 J]	12 DJ	34 DJ	29 DJ	15 DJ
Benzo(k)fluoranthene	mg/kg					0.37 JY [0.28]	18 DJ	83 DJY	72 DJY	37 DJY
Chrysene	mg/kg					0.22 [0.62]	24 DJ	27 DJ	23 DJ	16 DJ
Dibenzo(a,h)anthracene	mg/kg					0.044 [0.1]	4.9 DJ	13 DJ	8.7 DJ	4.8 DJ
Fluoranthene	mg/kg					0.26 J [1.4 J]	18 DJ	23 DJ	16 DJ	19 DJ
Fluorene	mg/kg					0.019 UJ [0.081 J]	0.39 DJ	1.4 DJ	1.2 DJ	0.61 DJ
Indeno(1,2,3-cd)pyrene	mg/kg	I				0.13 J [0.4 J]	13 DJ	36 DJ	30 DJ	15 DJ
Naphthalene	mg/kg	ł				0.02 J [0.16 J]	0.94 DJ	2.3 DJ	2 DJ	1.4 DJ
Phenanthrene	mg/kg	1				0.086 J [1.2 J]	2.9 DJ	4.1 DJ	3.1 DJ	2.8 DJ
Pyrene	mg/kg	1				0.23 J [1.1 J]	23 DJ	23 DJ	18 DJ	19 DJ
Total PAHs	mg/kg	1				2.04 J [8.04]	203 J	356	297	219 J
Metals										
Arsenic	mg/kg					12.1 [12.6]	14.8	63.8	44.4	25.2
Chromium	mg/kg					17.1 [19.2 J]	32.9 J	138 J	155 J	78.3 J
Copper	mg/kg					45.8 J [65]	19.9	36.8	41.3	27.2
Miscellaneous	, , ,		ı		1				1	
Total Organic Carbon	mg/kg					NA	NA	NA	NA	NA
. Star Organio Odrbon	9/9			1		14/1	. 4/ 1	14/1	1471	14/1

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A2-18	A2-19	A3-18	A3-19
Depth Interval (in.):			PRGs		PRGs	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/29/10	03/29/10	03/30/10	03/30/10
PCDDs/PCDFs									
1,2,3,4,6,7,8-HpCDD	ug/kg					37	262 EDJ	0.111	2
1,2,3,4,6,7,8-HpCDF	ug/kg					4.58	38.1 EJ	0.0134	0.435
1,2,3,4,7,8,9-HpCDF	ug/kg					0.44	3.21	0.00138 U	0.0386
1,2,3,4,7,8-HxCDD	ug/kg					0.182	2	0.00141 J	0.0199
1,2,3,4,7,8-HxCDF	ug/kg					0.994	1.56	0.000955 J	0.0361
1,2,3,6,7,8-HxCDD	ug/kg					0.89	6.97 EJ	0.00269 UX	0.0591
1,2,3,6,7,8-HxCDF	ug/kg					0.192	0.366	0.000821 U	0.0137
1,2,3,7,8,9-HxCDD	ug/kg					0.296	2.11	0.00363 U	0.0307
1,2,3,7,8,9-HxCDF	ug/kg					0.218	0.295	0.00134 U	0.0105
1,2,3,7,8-PeCDD	ug/kg					0.0483 UX	0.244	0.00123 U	0.00866
1,2,3,7,8-PeCDF	ug/kg					0.0502 J	0.0623	0.000851 U	0.00245 UX
2,3,4,6,7,8-HxCDF	ug/kg					0.278	0.929	0.000968 U	0.024
2,3,4,7,8-PeCDF	ug/kg					0.393	0.303	0.000863 J	0.0203
2,3,7,8-TCDD	ug/kg					0.00757 J	0.0136	0.000651 U	0.000854 UX
2,3,7,8-TCDF	ug/kg					0.00935 J	0.011	0.00046 U	0.00119
37Cl-2,3,7,8-TCDD	ug/kg					1.76	0.205	0.139	0.138
OCDD	ug/kg					583 EJ	709 EDJ	4.2	23.8 EJ
OCDF	ug/kg					25.1	186 EJ	0.0708	2.08
Total HpCDD	ug/kg					88	620 DJ	0.0766	4.67
Total HpCDF	ug/kg					28.6	210 J	0.20	2.29
Total HxCDD	ug/kg					6.4	60.1 J	0.000	0.52
Total HxCDF						8.29	50.3 PJ	0.0173	0.52
Total PeCDD	ug/kg					0.323	3.43	0.0166	0.0671
	ug/kg								
Total PeCDF	ug/kg					1.78	2.59 PJ	0.00193	0.144
Total TCDD	ug/kg					0.118	0.385	0.000872	0.0122
Total TCDF	ug/kg					0.0437	0.264 PJ	0.000365 UX	0.0276
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	1.04	5.08	0.00302	0.0668
SVOCs				T	T				
Pentachlorophenol	mg/kg					2.3	22 DJ [20 DJ]	0.044 U	0.067 J
Acenaphthene	mg/kg					0.051	0.57 DJ [0.57 DJ]	0.0013 J	0.0078 J
Acenaphthylene	mg/kg					1.3	8.9 DJ [9.2 DJ]	0.0047 J	0.12
Anthracene	mg/kg					1.4	32 DJ [26 DJ]	0.0058 J	0.17
Benzo(a)anthracene	mg/kg					2.8	8 DJ [7.6 DJ]	0.011	0.16
Benzo(a)pyrene	mg/kg					3.2	17 DJ [17 DJ]	0.012	0.15 J
Benzo(b)fluoranthene	mg/kg					6	35 DJ [43 DJY]	0.022	0.29 J
Benzo(ghi)perylene	mg/kg					2.7	15 DJ [16 DJ]	0.014	0.18 J
Benzo(k)fluoranthene	mg/kg					2.6	13 DJ [39 DJY]	0.0074 J	0.1 J
Chrysene	mg/kg					4.4	21 DJ [17 DJ]	0.013	0.18
Dibenzo(a,h)anthracene	mg/kg		-			0.96	5.7 DJ [5.1 DJ]	0.0031 J	0.056 J
Fluoranthene	mg/kg					4.2	11 DJ [11 DJ]	0.022	0.21
Fluorene	mg/kg					0.081	3.1 DJ [1.5 DJ]	0.0016 J	0.013 J
Indeno(1,2,3-cd)pyrene	mg/kg					2.7	16 DJ [16 DJ]	0.012	0.19 J
Naphthalene	mg/kg					0.1	1.2 DJ [1.1 DJ]	0.0016 J	0.0093 J
Phenanthrene	mg/kg					0.55	6 DJ [3 DJ]	0.0093	0.046
Pyrene	mg/kg					4.1	11 DJ [11 DJ]	0.016	0.19
Total PAHs	mg/kg					37.1	204 [185]	0.157 J	2.07 J
Metals			•						
Arsenic	mg/kg					13.8	50.4 [35.8]	6	14.2
Chromium	mg/kg					42.4 J	154 J [153 J]	18.1	22.5
Copper	mg/kg					34	39 [42.1]	17.4	22.9
Miscellaneous	9' 1.9					<u> </u>	55 [12.1]		
Total Organic Carbon	mg/kg					NA	31,600 [35,000]	5,470	16,400
Total Olyanic Calbon	my/kg					INA	51,000 [33,000]	5,470	10,400

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent	Prop		A3-20	A3-21	A3-22	A3-23	A3-24	A4-1
Depth Interval (in.):		USEPA	A PRGs	USEPA	PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/30/10	03/30/10	03/30/10	03/30/10	03/30/10	03/31/10
PCDDs/PCDFs											
1,2,3,4,6,7,8-HpCDD	ug/kg					4.15 EJ [4.43 EJ]	160 EDJ	105 EDJ	17.2 EJ	117 EDJ	0.248
1,2,3,4,6,7,8-HpCDF	ug/kg					0.815 [0.925]	40.6 EJ	23.7 EJ	4.51 EJ	26.8 EJ	0.0237
1,2,3,4,7,8,9-HpCDF	ug/kg					0.0607 [0.0672]	3.29	1.77	0.46	2.71	0.00237 J
1,2,3,4,7,8-HxCDD	ug/kg					0.0377 [0.0408]	1.36	0.78	0.165	1.16	0.00332 J
1,2,3,4,7,8-HxCDF	ug/kg					0.0465 [0.0542]	2.58	1.82	1.02	7.74 EJ	0.00201 J
1,2,3,6,7,8-HxCDD	ug/kg					0.118 [0.133]	4.96 EJ	2.58	0.536	3.88	0.00692
1,2,3,6,7,8-HxCDF	ug/kg					0.0223 [0.0233]	0.759	0.545	0.227	1.73	0.00174 J
1,2,3,7,8,9-HxCDD	ug/kg					0.0699 [0.0725]	2.23	1.37	0.258	2.05	0.0067
1,2,3,7,8,9-HxCDF	ug/kg					0.011 [0.0119]	0.441	0.322	0.26	1.65	0.00115 U
1,2,3,7,8-PeCDD	ug/kg					0.0144 [0.0162]	0.375	0.252	0.0576	0.429	0.00207 J
1,2,3,7,8-PeCDF	ug/kg					0.00377 J [0.00447 J]	0.0927	0.0681	0.056	0.302	0.000583 J
2,3,4,6,7,8-HxCDF	ug/kg					0.041 [0.0489]	1.36	0.92	0.365	2.32	0.00251 J
2,3,4,7,8-PeCDF	ug/kg					0.0256 [0.0306]	0.721	0.531	0.514	2.97	0.00339 J
2,3,7,8-TCDD	ug/kg					0.0018 UX [0.00243]	0.0329	0.0224	0.00498	0.0375	0.000651 J
2,3,7,8-TCDF	ug/kg					0.0019 [0.00264]	0.0162	0.0128	0.0131	0.0615	0.000756 J
37Cl-2,3,7,8-TCDD	ug/kg					0.133 [0.129]	0.155	0.145	0.134	0.135	0.139
OCDD	ug/kg					49.1 EJ [51.8 EJ]	570 EDJ	471 EDJ	137 EDJ	524 EDJ	10.6 EJ
OCDF	ug/kg					3.66 [3.95]	207 EJ	98.2 EJ	18.9 EJ	100 EJ	0.0764
Total HpCDD	ug/kg					8.51 J [8.98 J]	365 J	223 J	44.7 J	241 J	0.567
Total HpCDF	ug/kg					3.91 [4.2]	277 J	150 J	31.6 J	161 J	0.0959
Total HxCDD	ug/kg					0.884 [0.97]	47.3 J	21.9	6.31	28.1	0.0795
Total HxCDF	ug/kg					0.991 [1.13]	57.4 PJ	33.9	10.3	62.2 J	0.0477
Total PeCDD	ug/kg					0.108 [0.114]	2.73	1.48	0.566	2.08	0.0144
Total PeCDF	ug/kg					0.277 [0.309]	5.7 PJ	4.14	2.61	16.3 PJ	0.0288
Total TCDD	ug/kg					0.0251 [0.0285]	0.296	0.196	0.0657	0.311	0.00603
Total TCDF	ug/kg					0.0691 [0.0818]	0.394	0.276	0.194	0.76 PJ	0.0145
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.123 [0.138]	4.27	2.75	0.771	5.08	0.0140
SVOCs	u.g/g	•	0 20	0.0.2	0.00	020 [000]			V	0.00	0.0.1
Pentachlorophenol	mg/kg		I	l		0.037 J [0.053 J]	18 DJ	1.2 DJ	0.57	2.6 DJ	0.25 U
Acenaphthene	mg/kg					0.0081 J [0.0079 J]	0.86 DJ	0.12 DJ	0.047 J	0.42 DJ	0.23 J
Acenaphthylene	mg/kg					0.064 [0.07]	4.4 DJ	1.5 DJ	1.1	10 DJ	0.02 J
Anthracene	mg/kg					0.074 [0.082]	9.2 DJ	2.2 DJ	1.2	7.8 DJ	0.062
Benzo(a)anthracene	mg/kg					0.11 J [0.11 J]	9.4 DJ	1.3 DJ	1.2	17 DJ	0.002
Benzo(a)pyrene	mg/kg					0.12 J [0.13 J]	5.4 DJ	1.1 DJ	1.6	28 DJ	0.24
Benzo(b)fluoranthene	mg/kg					0.21 J [0.25 J]	21 DJ	2.7 DJ	4.1 JY	45 DJ	0.42
Benzo(ghi)perylene	mg/kg					0.21 J [0.23 J]	8.6 DJ	2.6 DJ	1.9	24 DJ	0.42
Benzo(k)fluoranthene	mg/kg					0.097 J [0.084 J]	6.1 DJ	1 DJ	3.6 JY	25 DJ	0.14
Chrysene	mg/kg					0.13 J [0.15 J]	11 DJ	1.5 DJ	1.8	19 DJ	0.14
Dibenzo(a,h)anthracene	mg/kg					0.035 J [0.035 J]	0.21 UJ	0.6 DJ	0.47	0.26 UJ	0.058
Fluoranthene	mg/kg					0.22 [0.23]	25 DJ	2.4 DJ	1.8	25 DJ	0.56
Fluorene	mg/kg					0.0097 J [0.011 J]	0.92 DJ	0.16 DJ	0.079	0.57 DJ	0.014 J
						0.13 J [0.16 J]	10 DJ	2.4 DJ	2	26 DJ	0.014 3
Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg						3.8 DJ	0.11 DJ	0.12	0.7 DJ	0.24 0.05 U
Phenanthrene	mg/kg					0.018 J [0.016 J]					
	mg/kg					0.074 [0.073]	15 DJ 13 DJ	0.61 DJ	0.57	3.2 DJ	0.19
Pyrene Total BAHs	mg/kg					0.15 J [0.16 J]		1.8 DJ	1.4	15 DJ	0.36
Total PAHs	mg/kg					1.6 J [1.75 J]	143	22.1 J	19.2 J	247	3.15 J
Metals			ī	ı		44 [40 0]	40.0	0.0		40	0.0
Arsenic	mg/kg					11 [10.8]	43.2	9.9	14.1	19	8.3
Chromium	mg/kg					25.4 [23.6]	53.4	26.7	21.6	41.1	60.5
Copper	mg/kg					34.1 [32.4]	40	41.7	21.9	28	27.1
Miscellaneous				_			T		·		
Total Organic Carbon	mg/kg					28,200 [34,900]	41,000	64,700	26,200	45,800	15,400

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent	Prop		A4-2	A4-3	A4-4	A4-5	A4-6	A4-7
Depth Interval (in.):		USEPA	PRGs	USEPA	PRGs	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/31/10	03/31/10	03/31/10	03/31/10	03/31/10	03/31/10
PCDDs/PCDFs											
1,2,3,4,6,7,8-HpCDD	ug/kg					0.352	0.209	0.755	0.215	1.35	0.106
1,2,3,4,6,7,8-HpCDF	ug/kg					0.0423	0.0196	0.132	0.0255	0.204	0.0118
1,2,3,4,7,8,9-HpCDF	ug/kg					0.00384 J	0.00157 J	0.0104	0.00205 J	0.0158	0.00122 J
1,2,3,4,7,8-HxCDD	ug/kg					0.00417 J	0.00232 J	0.0106	0.00344 J	0.0155	0.00143 J
1,2,3,4,7,8-HxCDF	ug/kg					0.00326 J	0.00129 J	0.00765	0.0044 J	0.0123	0.000767 J
1,2,3,6,7,8-HxCDD	ug/kg					0.0102	0.00506	0.0246	0.00768	0.0394	0.00287 J
1,2,3,6,7,8-HxCDF	ug/kg					0.00199 J	0.00054 UX	0.00601	0.00675	0.00814	0.000579 J
1,2,3,7,8,9-HxCDD	ug/kg					0.00702	0.00413 J	0.018	0.00617	0.0253	0.00253 J
1,2,3,7,8,9-HxCDF	ug/kg					0.000976 J	0.000399 U	0.00245 J	0.00289 J	0.00362 J	0.000546 U
1,2,3,7,8-PeCDD	ug/kg					0.00144 UX	0.000645 UX	0.00465 J	0.00232 J	0.00724	0.000623 J
1,2,3,7,8-PeCDF	ug/kg					0.000631 J	0.000581 U	0.00116 J	0.00157 J	0.00239 J	0.00066 U
2,3,4,6,7,8-HxCDF	ug/kg					0.00386 J	0.000993 J	0.00971	0.0195	0.0138	0.000912 J
2,3,4,7,8-PeCDF	ug/kg					0.00576	0.00101 UX	0.00987	0.0635	0.0130	0.000971 J
2,3,7,8-TCDD	ug/kg					0.000457 UX	0.000551 U	0.00367	0.0033 0.00127 UX	0.00123	0.0003713 0.000247 U
2,3,7,8-TCDF	ug/kg					0.000437 UX	0.000331 J	0.00140	0.00127 67	0.00173	0.000247 U
37Cl-2,3,7,8-TCDD	ug/kg					0.000024 07	0.000387 3	0.00132	0.00203	0.00230	0.000271 0
OCDD	0 0					12.1 EJ	9.21 EJ	15.9 EJ	6.34	21.1 EJ	5.03
	ug/kg					_					
OCDF	ug/kg					0.186	0.0876	0.477	0.0574	0.759	0.0421
Total HpCDD	ug/kg					0.777	0.461	1.62	0.527	4.85	0.244
Total HpCDF	ug/kg					0.208	0.0831	0.519	0.0853	0.867	0.0444
Total HxCDD	ug/kg					0.0966	0.0462	0.221	0.119	0.548	0.0348
Total HxCDF	ug/kg					0.0809	0.0227	0.198 PJ	0.255	0.311 PJ	0.0171
Total PeCDD	ug/kg					0.0102	0.00417	0.0464	0.0375	0.0767	0.00403
Total PeCDF	ug/kg					0.0452	0.00603	0.0958 PJ	0.478 PJ	0.123 PJ	0.0073
Total TCDD	ug/kg					0.00734	0.00125	0.0142	0.0176	0.0262	0.000713 U
Total TCDF	ug/kg					0.0121	0.0014	0.041	0.144	0.0629 PJ	0.00225
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.0126	0.00651	0.031	0.0311	0.0472	0.00453
SVOCs											
Pentachlorophenol	mg/kg					0.045 U	0.046 U	0.31 U	0.49 U	0.31 U	0.05 U
Acenaphthene	mg/kg					0.01	0.0093 U	0.022 J	0.24	0.054 J	0.008 J
Acenaphthylene	mg/kg					0.035	0.0032 J	0.045 J	0.58	0.29	0.011
Anthracene	mg/kg					0.036	0.0043 J	0.06 J	0.86	0.35	0.013
Benzo(a)anthracene	mg/kg					0.077	0.011	0.22	1.1	0.76	0.046
Benzo(a)pyrene	mg/kg					0.085	0.011	0.3	1.1	0.8	0.047
Benzo(b)fluoranthene	mg/kg					0.14	0.016	0.43	2 JY	1.6	0.1 JY
Benzo(ghi)perylene	mg/kg					0.092	0.012	0.33	1.4	0.77	0.039
Benzo(k)fluoranthene	mg/kg					0.036	0.0062 J	0.26	1.7 JY	0.5	0.088 JY
Chrysene	mg/kg					0.11	0.013	0.37	1.3	1.1	0.064
Dibenzo(a,h)anthracene	mg/kg					0.022	0.0021 J	0.068	0.19	0.22	0.008 J
Fluoranthene	mg/kg					0.22	0.02	0.56	3.2	1.4	0.087
Fluorene	mg/kg					0.0076 J	0.0093 U	0.025 J	0.23	0.062 U	0.0079 J
Indeno(1,2,3-cd)pyrene	mg/kg					0.084	0.0093	0.28	1.1	0.8	0.037
Naphthalene	mg/kg					0.056	0.0093 U	0.063 U	0.56	0.19	0.016
Phenanthrene	mg/kg					0.050	0.0055	0.003 0	2.5	0.74	0.051
Pyrene	mg/kg					0.13	0.013	0.17	1.8	0.89	0.069
Total PAHs	mg/kg					1.28 J	0.012 0.135 J	3.51 J	18.2	10.5 J	0.604 J
	mg/kg		·-	- -		1.200	0.100 0	0.010	10.2	10.00	0.004 0
Metals	ma/ks					10.5	11.9	7	11 1	13	9.3
Arsenic	mg/kg					10.5			11.4		
Chromium	mg/kg					21	20.6	20.6	23.9	28.2	18
Copper	mg/kg					38.1	20.7	36.8	128	46.7	21.9
Miscellaneous		1	1	1	1			1			
Total Organic Carbon	mg/kg					NA	NA	34,100	NA	83,300	13,900

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A4-8	A4-9	A4-10	A5-6
Depth Interval (in.):			PRGs		PRGs	0 - 6	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/31/10	03/31/10	03/31/10	03/30/10
PCDDs/PCDFs									
1,2,3,4,6,7,8-HpCDD	ug/kg					0.474 [0.431]	0.0596	0.084	9.9 EJ [15 EJ]
1,2,3,4,6,7,8-HpCDF	ug/kg					0.0824 [0.0751]	0.00254 J	0.000582 U	1.38 [2.35]
1,2,3,4,7,8,9-HpCDF	ug/kg					0.00579 [0.00603]	0.000676 U	0.000429 U	0.118 [0.173]
1,2,3,4,7,8-HxCDD	ug/kg					0.00766 [0.00705]	0.00145 UX	0.00204 J	0.0812 [0.121]
1,2,3,4,7,8-HxCDF	ug/kg					0.00521 [0.00428 J]	0.000413 U	0.000325 U	0.0763 [0.105]
1,2,3,6,7,8-HxCDD	ug/kg					0.016 [0.0137]	0.00167 J	0.00222 J	0.277 [0.405]
1,2,3,6,7,8-HxCDF	ug/kg					0.00348 J [0.00311 J]	0.000417 U	0.00032 U	0.0246 [0.0361]
1,2,3,7,8,9-HxCDD	ug/kg					0.0131 [0.0114]	0.00182 J	0.00227 J	0.123 [0.19]
1,2,3,7,8,9-HxCDF	ug/kg	-				0.00137 J [0.00126 J]	0.000363 U	0.000539 U	0.0224 [0.0256]
1,2,3,7,8-PeCDD	ug/kg	I	-		-	0.00348 J [0.00341 J]	0.00062 U	0.00083 J	0.0325 [0.0443]
1,2,3,7,8-PeCDF	ug/kg	-			-	0.000528 J [0.000691 J]	0.000512 U	0.000404 U	0.00621 [0.00719]
2,3,4,6,7,8-HxCDF	ug/kg					0.00604 [0.00498]	0.000484 U	0.000407 U	0.0615 [0.0779]
2,3,4,7,8-PeCDF	ug/kg					0.00598 [0.00519]	0.000933 U	0.000403 U	0.0355 [0.0416]
2,3,7,8-TCDD	ug/kg	1				0.000716 J [0.000635 J]	0.000245 J	0.000211 U	0.00399 [0.00434]
2,3,7,8-TCDF	ug/kg					0.00082 J [0.000873 J]	0.000379 U	0.000349 U	0.00155 [0.00188]
37CI-2,3,7,8-TCDD	ug/kg	1				0.134 [0.14]	0.143	0.135	0.136 [0.139]
OCDD	ug/kg					8.69 EJ [8.57 EJ]	1.57	3.26	94.9 EJ [167 EDJ]
OCDF	ug/kg	-				0.28 [0.246]	0.00721 J	0.00142 UX	7.43 [8.96 EJ]
Total HpCDD	ug/kg					1.03 [0.965]	0.148	0.229	25.5 J [37 J]
Total HpCDF	ug/kg					0.29 [0.264]	0.00254	0.00103 UX	8.56 [12.8]
Total HxCDD	ug/kg					0.154 [0.149]	0.0256	0.0417	2.91 [3.68]
Total HxCDF	ug/kg					0.115 [0.104]	0.00207	0.000391	2.29 [2.68]
Total PeCDD	ug/kg					0.03 [0.0252]	0.00336	0.00656	0.325 [0.414]
Total PeCDF	ug/kg					0.0549 [0.0514]	0.00159	0.000404 U	0.304 PJ [0.352 PJ]
Total TCDD	ug/kg					0.00524 [0.00594]	0.000493	0.000336 UX	0.0642 [0.0664]
Total TCDF	ug/kg					0.022 [0.0152]	0.000379 U		0.041 PJ [0.0473 PJ]
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.0197 [0.0181]	0.00169	0.0033	0.259 [0.386]
SVOCs									-
Pentachlorophenol	mg/kg					0.047 U [0.097 U]	0.051 U	0.043 U	0.4 J [0.53 J]
Acenaphthene	mg/kg					0.0089 J [0.02 U]	0.01 U	0.0088 U	0.13 [0.18]
Acenaphthylene	mg/kg					0.035 [0.02]	0.0046 J	0.0088 U	1.8 [2.6]
Anthracene	mg/kg					0.038 [0.026]	0.0043 J	0.0088 U	2.2 [3]
Benzo(a)anthracene	mg/kg					0.11 [0.081]	0.0098 J	0.0088 U	1.2 [1.7]
Benzo(a)pyrene	mg/kg					0.13 [0.11]	0.014	0.0027 J	2.3 [3.6]
Benzo(b)fluoranthene	mg/kg					0.3 JY [0.25 JY]	0.027	0.0035 J	3.3 [5.5]
Benzo(ghi)perylene	mg/kg					0.14 [0.12]	0.016	0.0088 U	2.9 [4.2]
Benzo(k)fluoranthene	mg/kg					0.26 JY [0.22 JY]	0.0089 J	0.0088 U	1.5 [1.9]
Chrysene	mg/kg					0.18 [0.16]	0.017	0.0088 U	1.7 [3]
Dibenzo(a,h)anthracene	mg/kg					0.03 [0.029]	0.01 U	0.0088 U	0.67 [1.1]
Fluoranthene	mg/kg					0.26 [0.23]	0.025	0.0066 J	1.5 [2.2]
Fluorene	mg/kg					0.006 J [0.0066 J]	0.01 U	0.0088 U	0.2 [0.27]
Indeno(1,2,3-cd)pyrene	mg/kg					0.13 [0.12]	0.014	0.0088 U	2.4 [3.6]
Naphthalene	mg/kg					0.023 [0.011 J]	0.01 U	0.0088 U	0.089 J [0.14]
Phenanthrene	mg/kg					0.11 [0.087]	0.015	0.0076 J	0.35 [0.5]
Pyrene	mg/kg					0.17 [0.14]	0.016	0.0052 J	1.7 [2.5]
Total PAHs	mg/kg					1.67 J [1.39 J]	0.172 J	0.0052 J	23.9 J [36]
Metals	9,119			l		5 [1.00 0]	J, L U	0.02000	_5.5 5 [55]
Arsenic	mg/kg			l		7.1 [6.7]	8.4	12.8	6.5 [6.4]
Chromium	mg/kg					18.2 [18.9]	19.6	15	20.2 J [21.2 J]
Copper	mg/kg					24.6 [23.8]	22.9	16.7	24.3 [26.8]
Miscellaneous	mg/kg	_ -		<u></u>		2٦.٥ [2٥.٥]	۵۵.5	10.7	27.0 [20.0]
	ma/ka			I		NA	NΙΛ	NA	28 400 [27 700]
Total Organic Carbon	mg/kg					INA	NA	INA	28,400 [27,700]

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent		osed	A5-7	A6-1	A6-2	A6-3	A6-4
Depth Interval (in.):			A PRGs		PRGs	0-6	0-6	0-6	0 - 6	0-6
Date Collected:		R	C/I	R	C/I	03/30/10	03/31/10	03/31/10	03/31/10	03/31/10
PCDDs/PCDFs										
1,2,3,4,6,7,8-HpCDD	ug/kg					23.5 EJ	2.14	0.728	0.341	0.633
1,2,3,4,6,7,8-HpCDF	ug/kg					4.34 EJ	0.382 J	0.123	0.0417	0.103
1,2,3,4,7,8,9-HpCDF	ug/kg					0.358	0.0297	0.00903	0.00249 UX	0.00845
1,2,3,4,7,8-HxCDD	ug/kg					0.194	0.0194	0.00641	0.00476 J	0.00719
1,2,3,4,7,8-HxCDF	ug/kg					0.187	0.0169	0.00393 J	0.00334 J	0.00637
1,2,3,6,7,8-HxCDD	ug/kg					0.823	0.0692	0.0218	0.0101	0.02
1,2,3,6,7,8-HxCDF	ug/kg					0.0613	0.00723	0.00177 J	0.00192 J	0.00428 J
1,2,3,7,8,9-HxCDD	ug/kg					0.314	0.0302	0.0108	0.00764	0.0125
1,2,3,7,8,9-HxCDF	ug/kg					0.0487	0.0043 J	0.000931 U	0.00704 0.000822 J	0.00235 J
1,2,3,7,8-PeCDD	ug/kg					0.0756	0.00746	0.0026 J	0.00224 J	0.00233 J
1,2,3,7,8-PeCDF	ug/kg					0.0730	0.00740 0.0013 J	0.0020 J	0.00224 J	0.00307 J
2,3,4,6,7,8-HxCDF	ug/kg					0.0113	0.00155	0.000332 J	0.000412 J	0.001133
2,3,4,7,8-PeCDF	ug/kg					0.0706	0.00612	0.0041 J	0.0032 J	0.00927
2,3,7,8-TCDD						0.0708	0.00012 0.000944 J	0.00162 J	0.00445 J	0.0169 0.00046 UX
2,3,7,8-TCDF	ug/kg						0.000944 J			0.00046 07
37Cl-2,3,7,8-TCDD	ug/kg					0.00281 0.144		0.000249 J	0.0005 J 0.139	
	ug/kg						0.134	0.142		0.145
OCDD	ug/kg					214 EDJ	26 EJ	15.2 EJ	12.8 EJ	10.4 EJ
OCDF	ug/kg					17.8 EJ	1.77	0.575	0.149	0.459
Total HpCDD	ug/kg					54.3 J	4.39	1.45	0.77	1.27
Total HpCDF	ug/kg					27.7 J	2.01 J	0.572	0.154	0.44
Total HxCDD	ug/kg					6.98	0.5	0.156	0.111	0.158
Total HxCDF	ug/kg					5.96	0.548	0.137	0.0619	0.174
Total PeCDD	ug/kg					0.838	0.0725	0.0201	0.0179	0.0291
Total PeCDF	ug/kg					0.637 PJ	0.0663 PJ	0.017 PJ	0.0399	0.132 PJ
Total TCDD	ug/kg					0.143	0.0141	0.00514	0.004	0.00796
Total TCDF	ug/kg					0.0848 PJ	0.00742 PJ	0.0032 PJ	0.013	0.0372
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.635	0.0604	0.022	0.015	0.0252
SVOCs	_									
Pentachlorophenol	mg/kg					2.1 DJ	0.19	0.13	0.23 U	0.09 U
Acenaphthene	mg/kg					0.4 DJ	0.0094 J	0.0094 J	1.2	0.019
Acenaphthylene	mg/kg					4.6 DJ	0.14	0.18	0.34	0.098
Anthracene	mg/kg					5.6 DJ	0.21	0.19	0.46	0.093
Benzo(a)anthracene	mg/kg	-			-	2.1 DJ	0.12	0.41	0.5	0.2
Benzo(a)pyrene	mg/kg	-			-	5.6 DJ	0.18	0.61	0.56	0.22
Benzo(b)fluoranthene	mg/kg					9 DJ	0.37	1.1	1.1 JY	0.35
Benzo(ghi)perylene	mg/kg					8.6 DJ	0.19	0.38	0.9	0.21
Benzo(k)fluoranthene	mg/kg					2 DJ	0.11	0.35	0.97 JY	0.11
Chrysene	mg/kg					3.7 DJ	0.2	0.58	0.53	0.26
Dibenzo(a,h)anthracene	mg/kg					2 DJ	0.051	0.13	0.11	0.042
Fluoranthene	mg/kg					4.5 DJ	0.19	0.29	1.6	0.34
Fluorene	mg/kg					0.53 DJ	0.014 J	0.02	0.99	0.021
Indeno(1,2,3-cd)pyrene	mg/kg					7.5 DJ	0.23	0.4	0.85	0.2
Naphthalene	mg/kg					0.68 DJ	0.017 J	0.0081 J	2	0.057
Phenanthrene	mg/kg					2.5 DJ	0.068	0.067	2.1	0.19
Pyrene	mg/kg					3.4 DJ	0.18	0.34	1.1	0.23
Total PAHs	mg/kg					62.7	2.28 J	5.06 J	14.3	2.64
Metals	, , ,					1	1			
Arsenic	mg/kg					10.4	7.4	11.9	16.5	8.2
Chromium	mg/kg					21.9 J	15.4	15.1	22.2	19
Copper	mg/kg					26.8	16.2	15.6	31.2	38.2
Miscellaneous			<u> </u>	<u> </u>					· ··-	55.2
Total Organic Carbon	mg/kg					27,100	24,900	15,300	20,300	NA
Total Organic Carbon	mg/kg					21,100	24,300	10,000	20,300	INA

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:			rent	Proposed		A6-5	A6-6	A6-7
Depth Interval (in.):		USEPA	A PRGs	USEPA	PRGs	0 - 6	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/31/10	03/31/10	03/31/10
PCDDs/PCDFs								
1,2,3,4,6,7,8-HpCDD	ug/kg					0.0916 [0.0975]	0.358	0.136
1,2,3,4,6,7,8-HpCDF	ug/kg	1			1	0.00565 [0.00748]	0.0426	0.019
1,2,3,4,7,8,9-HpCDF	ug/kg					0.00126 U [0.000713 U]	0.0026 J	0.0014 J
1,2,3,4,7,8-HxCDD	ug/kg	1			1	0.00179 J [0.0012 UX]	0.00372 J	0.00174 J
1,2,3,4,7,8-HxCDF	ug/kg	1			1	0.000502 U [0.000605 U]	0.00187 J	0.00105 J
1,2,3,6,7,8-HxCDD	ug/kg				-	0.00266 J [0.00261 UX]	0.0107	0.00418 J
1,2,3,6,7,8-HxCDF	ug/kg				-	0.0005 U [0.000621 U]	0.00114 UX	0.00114 UX
1,2,3,7,8,9-HxCDD	ug/kg					0.00258 J [0.00254 J]	0.007	0.00295 J
1,2,3,7,8,9-HxCDF	ug/kg					0.000271 U [0.000401 U]	0.000666 U	0.000562 U
1,2,3,7,8-PeCDD	ug/kg					0.000786 J [0.000701 J]	0.00187 J	0.000761 J
1,2,3,7,8-PeCDF	ug/kg					0.000389 U [0.000406 U]	0.000311 J	0.000683 U
2,3,4,6,7,8-HxCDF	ug/kg					0.00054 J [0.000621 J]	0.00246 J	0.00134 J
2,3,4,7,8-PeCDF	ug/kg					0.00102 J [0.000761 J]	0.00234 J	0.00247 J
2,3,7,8-TCDD	ug/kg					0.000348 U [0.000344 U]	0.000468 J	0.000321 J
2,3,7,8-TCDF	ug/kg					0.000507 U [0.000642 U]		0.000339 U
37CI-2,3,7,8-TCDD	ug/kg					0.135 [0.137]	0.142	0.136
OCDD	ug/kg					2.84 [3.24]	11.5 EJ	3.6
OCDF	ug/kg					0.0207 [0.0259]	0.175	0.0791
Total HpCDD	ug/kg					0.221 [0.226]	0.809	0.297
Total HpCDF	ug/kg					0.0223 [0.0259]	0.176	0.08
Total HxCDD	ug/kg	-			-	0.0332 [0.0267]	0.104	0.0407
Total HxCDF	ug/kg					0.00805 [0.00798]	0.0528	0.0307
Total PeCDD	ug/kg					0.00781 J [0.00212 J]	0.0142	0.0072
Total PeCDF	ug/kg					0.00719 [0.00313]	0.0219	0.0171 PJ
Total TCDD	ug/kg					0.000729 [0.000506 UX]	0.00296	0.00365
Total TCDF	ug/kg					0.00196 [0.000775]	0.00631	0.00791 PJ
2,3,7,8-TCDD TEQ	ug/kg	1	5-20	0.072	0.95	0.00368 [0.00327]	0.0132	0.00562
SVOCs						T		·
Pentachlorophenol	mg/kg					0.049 U	0.054 U	0.047 U
Acenaphthene	mg/kg					0.0099 U	0.011	0.011
Acenaphthylene	mg/kg					0.012	0.079	0.053
Anthracene	mg/kg					0.011	0.071	0.051
Benzo(a)anthracene	mg/kg					0.024	0.079	0.089
Benzo(a)pyrene	mg/kg					0.03	0.16	0.12
Benzo(b)fluoranthene	mg/kg					0.051	0.27	0.2
Benzo(ghi)perylene	mg/kg					0.029	0.15	0.11
Benzo(k)fluoranthene	mg/kg					0.013	0.081	0.071
Chrysene	mg/kg					0.032	0.13	0.1
Dibenzo(a,h)anthracene	mg/kg					0.007 J	0.042	0.028
Fluoranthene	mg/kg					0.045	0.11	0.15
Fluorene	mg/kg					0.0099 U	0.017	0.012
Indeno(1,2,3-cd)pyrene	mg/kg					0.028	0.15	0.11
Naphthalene	mg/kg					0.0054 J	0.028	0.043
Phenanthrene	mg/kg					0.021	0.059	0.12
Pyrene Total BAHa	mg/kg	-			-	0.033	0.081	0.087
Total PAHs	mg/kg					0.341 J	1.52	1.36
Metals	a. /i		ı	1 1			04.5	0.5
Arsenic	mg/kg					8	21.5	8.5
Chromium	mg/kg					14.7	19.5	16.8
Copper	mg/kg					17.2	24	23.6
Miscellaneous			ı	1		10.000	10.000	h/ 4
Total Organic Carbon	mg/kg					13,300	12,800	NA

TABLE 1 - VALIDATED ANALTICAL DATA SUMMARY TABLE

Sample ID:		Cur	rent	Prop	osed	A6-8	NPL
Depth Interval (in.):		USEPA	PRGs	USEPA	A PRGs	0 - 6	0 - 6
Date Collected:	Units	R	C/I	R	C/I	03/31/10	03/29/10
PCDDs/PCDFs							
1,2,3,4,6,7,8-HpCDD	ug/kg					0.0847	0.413
1,2,3,4,6,7,8-HpCDF	ug/kg					0.0013 J	0.0518
1,2,3,4,7,8,9-HpCDF	ug/kg					0.000229 U	0.004 J
1,2,3,4,7,8-HxCDD	ug/kg					0.00146 J	0.00475 J
1,2,3,4,7,8-HxCDF	ug/kg					0.000207 U	0.00355 J
1,2,3,6,7,8-HxCDD	ug/kg					0.00216 J	0.0114
1,2,3,6,7,8-HxCDF	ug/kg					0.000207 U	0.00195 J
1,2,3,7,8,9-HxCDD	ug/kg					0.00262 J	0.00723
1,2,3,7,8,9-HxCDF	ug/kg					0.000329 U	0.00101 U
1,2,3,7,8-PeCDD	ug/kg					0.00075 UX	0.00244 J
1,2,3,7,8-PeCDF	ug/kg					0.000421 U	0.000808 J
2,3,4,6,7,8-HxCDF	ug/kg					0.000245 U	0.00348 J
2,3,4,7,8-PeCDF	ug/kg					0.000373 U	0.00328 J
2,3,7,8-TCDD	ug/kg					0.00114 UX	0.00063 J
2,3,7,8-TCDF	ug/kg					0.00025 U	0.000928 J
37CI-2,3,7,8-TCDD	ug/kg					0.00020 0	0.142
OCDD	ug/kg					3.36	12.6 EJ
OCDF	ug/kg					0.00396 J	0.215
Total HpCDD	ug/kg			ł		0.003903	0.854
Total HpCDF	ug/kg					0.0013	0.834
Total HxCDD	ug/kg					0.0013	0.212
Total HxCDF						0.0376 0.00127 UX	0.0614
Total PeCDD	ug/kg ug/kg					0.00127 07	0.0381
Total PeCDF						0.00429	0.0361
Total TCDD	ug/kg						
	ug/kg					0.00132	0.0319
Total TCDF 2,3,7,8-TCDD TEQ	ug/kg		 E 20		 0.05	0.000374	0.0201
	ug/kg	1	5-20	0.072	0.95	0.00249	0.0159
SVOCs			1				0.040.1
Pentachlorophenol	mg/kg					0.041 U	0.016 J
Acenaphthene	mg/kg					0.0084 U	0.011 J
Acenaphthylene	mg/kg					0.0084 U	0.039
Anthracene	mg/kg					0.0013 J	0.058
Benzo(a)anthracene	mg/kg					0.0084 U	0.14
Benzo(a)pyrene	mg/kg					0.0084 U	0.14
Benzo(b)fluoranthene	mg/kg					0.0024 J	0.16
Benzo(ghi)perylene	mg/kg					0.0084 U	0.12
Benzo(k)fluoranthene	mg/kg					0.0035 J	0.069
Chrysene	mg/kg					0.0084 U	0.15
Dibenzo(a,h)anthracene	mg/kg					0.0084 U	0.015 J
Fluoranthene	mg/kg					0.0055 J	0.29
Fluorene	mg/kg					0.0084 U	0.0086 J
Indeno(1,2,3-cd)pyrene	mg/kg					0.0084 U	0.094
Naphthalene	mg/kg					0.0084 U	0.043
Phenanthrene	mg/kg					0.0068 J	0.19
Pyrene	mg/kg					0.0038 J	0.24
Total PAHs	mg/kg					0.0233 J	1.77 J
Metals							
Arsenic	mg/kg					10.4	9.6
Chromium	mg/kg	-				15	12.9 J
Copper	mg/kg					15.3	21.8
Miscellaneous	-			-	-	-	
Total Organic Carbon	mg/kg					NA	NA

TABLE 1 - VALIDATED ANALYTICAL DATA SUMMARY TABLE

FORMER KOPPERS WOOD-TREATING SITE - CARBONDALE, ILLINOIS

Notes:

PCDDs/PCDFs = polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans

PAHs - polycyclic aromatic hydrocarbons

TEQ = Toxicity Equivalent, calculated using WHO-2005 TEFs and non-detects = 0

WHO = World Health Organization

TEFs = Toxicity Equivalent Factors

USEPA = United States Environmental Protection Agency

PRGs = preliminary remediation goals

Current: USEPA April 1998

Proposed: USEPA December 2009

R = Residential

C/I = Commercial/Industrial

NA = not analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

J = Estimated value.

U = Not detected above laboratory reporting limit (associated value is the laboratory reporting limit).

DJ = Diluted sample result less than the calibration range.

- JY = The laboratory quantitated the peak as benzo(b)fluoranthene and reported benzo(k)fluoranthene as non-detect. The benzo(k)fluoranthene concentrations for these samples have been calculated from the peak area identified as benzo(b)fluoranthene using the appropriate benzo(k)fluoranthene response factor. Both compounds have been reported due to the lack of chromatographic resolution and the reported benzo(b)fluoranthene and benzo(k)fluoranthene concentrations have been qualified as ("JY") indicating the compounds could not be resolved (DJY indicates a diluted sample).
- UJ = Not detected above the reported sample quantitation limit; however, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- UX = Elevated detection limit as estimated maximum possible concentration.
- EDJ = Diluted sample result greater than the calibration range.
- EJ = Original sample result greater than the calibration range.
- PJ = The amount reported is the estimated maximum possible concentration due to possible chlorinated diphenylether interference.

Attachment 2

Sample Location Maps

9

Attachment 3

Data Validation Reports

Beazer East, Inc. Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

SVOCs, Metals, and TOC

SDG # C0D020489

Analyses Performed By: TestAmerica Laboratories, Inc. Pittsburgh, Pennsylvania

Report: # 12082R Review Level: Tier III

Project: B0039208.0000.00002

SUMMARY

The following is an assessment of the data package for Sample Delivery Group (SDG) # C0D020489 for sampling from the Beazer East, Inc. Former Koppers Wood-Treating Site in Carbondale, Illinois. Analyses were performed on the following samples:

			Sample	_ ,		F	nalysi	S	
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	MET	MISC
A2-12 (0-6")	C0D020489001	Sediment	3/29/2010			Х		Х	Х
RB032910	C0D020489002	Water	3/29/2010			Х		Х	Х
A2-11 (0-6")	C0D020489003	Sediment	3/29/2010			Х		Х	Х
A2-13 (0-6")	C0D020489004	Soil	3/29/2010			Х		Х	
Field Duplicate #1	C0D020489005	Soil	3/29/2010	A2-13 (0-6")		Χ		Χ	
A2-14 (0-6")	C0D020489006	Soil	3/29/2010			Χ		Χ	
A2-15 (0-6")	C0D020489007	Soil	3/29/2010			Χ		Χ	
A2-16 (0-6")	C0D020489008	Soil	3/29/2010			Χ		Χ	
A2-17 (0-6")	C0D020489009	Soil	3/29/2010			Χ		Х	
A2-18 (0-6")	C0D020489010	Soil	3/29/2010			Χ		Х	
A2-19 (0-6")	C0D020489011	Sediment	3/29/2010			Χ		Х	Х
Field Duplicate #2	C0D020489012	Sediment	3/29/2010	A2-19 (0-6")		Х		Х	Х
NPL (0-6")	C0D020489013	Soil	3/29/2010			Χ		Х	
A5-6 (0-6")	C0D020489014	Sediment	3/30/2010			Χ		Х	Х
Field Duplicate #3	C0D020489015	Sediment	3/30/2010	A5-6 (0-6")		Χ		Х	Х
A5-7 (0-6")	C0D020489016	Sediment	3/30/2010			Χ		Х	Х
A1-37 (0-6")	C0D020489017	Soil	3/30/2010			Χ		Χ	
A1-36 (0-6")	C0D020489018	Soil	3/30/2010			Χ		Χ	
A1-38 (0-6")	C0D020489019	Soil	3/30/2010			Χ		Χ	
A1-39 (0-6")	C0D020489020	Soil	3/30/2010			Χ		Χ	
A1-35 (0-6")	C0D020489021	Soil	3/30/2010			Χ		Χ	
A1-40 (0-6")	C0D020489022	Soil	3/30/2010			Χ		Х	
A1-41 (0-6")	C0D020489023	Soil	3/30/2010			Χ		Х	
A1-42 (0-6")	C0D020489024	Soil	3/30/2010			Χ		Х	
A1-43 (0-6")	C0D020489025	Sediment	3/30/2010			Χ		Х	Χ
A1-44 (0-6")	C0D020489026	Sediment	3/30/2010			Χ		Х	Χ
Field Duplicate #4	C0D020489027	Sediment	3/30/2010	A1-44 (0-6")		Χ		Х	Х
A1-47 (0-6")	C0D020489028	Sediment	3/30/2010			Χ		Х	Х
A1-45 (0-6")	C0D020489029	Soil	3/30/2010			Х		Х	
A1-46 (0-6")	C0D020489030	Sediment	3/30/2010			Х		Х	Х
A1-48 (0-6")	C0D020489031	Sediment	3/30/2010			Х		Х	Х
RB033010	C0D020489032	Water	3/30/2010			Х		Х	Х

			Sample	D		P	nalysi	s	
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	MET	MISC
RB033110	C0D020489033	Water	3/31/2010			Χ		Х	Χ
A3-20 (0-6")	C0D020489034	Sediment	3/30/2010			Χ		Х	Х
Field Duplicate #5	C0D020489035	Sediment	3/30/2010	A3-20 (0-6")		Χ		Х	Х
A3-18 (0-6")	C0D020489036	Sediment	3/30/2010			Χ		Х	Х
A3-19 (0-6")	C0D020489037	Sediment	3/30/2010			Χ		Х	Х
A3-23 (0-6")	C0D020489038	Sediment	3/30/2010			Χ		Χ	Χ
A3-22 (0-6")	C0D020489039	Sediment	3/30/2010			Х		Х	Χ
A3-21 (0-6")	C0D020489040	Sediment	3/30/2010			Х		Х	Χ
A3-24 (0-6")	C0D020489041	Sediment	3/30/2010			Х		Х	Х
A6-1 (0-6")	C0D020489042	Sediment	3/31/2010			Х		Х	Χ
A6-2 (0-6")	C0D020489043	Sediment	3/31/2010			Х		Х	Х
A6-3 (0-6")	C0D020489044	Sediment	3/31/2010			Χ		Х	Х
A6-4 (0-6")	C0D020489045	Soil	3/31/2010			Χ		Х	
A6-5 (0-6")	C0D020489046	Sediment	3/31/2010			Χ		Х	Χ
A4-7 (0-6")	C0D020489047	Sediment	3/31/2010			Χ		Х	Χ
A4-8 (0-6")	C0D020489048	Soil	3/31/2010			Х		Χ	
Field Duplicate #6	C0D020489049	Soil	3/31/2010	A4-8 (0-6")		Х		Χ	
A4-9 (0-6")	C0D020489050	Soil	3/31/2010			Х		Χ	
A4-10 (0-6")	C0D020489051	Soil	3/31/2010			Х		Χ	
A6-6 (0-6")	C0D020489052	Sediment	3/31/2010			Х		Χ	Χ
A6-7 (0-6")	C0D020489053	Soil	3/31/2010			Χ		Χ	
A6-8 (0-6")	C0D020489054	Soil	3/31/2010			Χ		Χ	
A4-5 (0-6")	C0D020489055	Soil	3/31/2010			Χ		Χ	
A4-6 (0-6")	C0D020489056	Sediment	3/31/2010			Χ		Χ	Χ
A4-4 (0-6")	C0D020489057	Sediment	3/31/2010			Х		Х	Χ
A4-1 (0-6")	C0D020489058	Sediment	3/31/2010			Х		Х	Х
A4-2 (0-6")	C0D020489059	Soil	3/31/2010			Х		Х	
A4-3 (0-6")	C0D020489060	Soil	3/31/2010			Х		Χ	

- The matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on sample locations 1. A2-17 (0-6"), A1-43 (0-6"), and A6-1 (0-6").
- 2. Sample results were reported on a dry-weight basis.

Analyses:

SVOC: Semivolatile Organic Compounds (client specific target compound list) – USEPA SW846 Method 8270C.

MET: Metals (client specific target analyte list) – USEPA SW846 Method 6010B.

MISC: Total Organic Carbon (TOC) – Walkley-Black Method and USEPA SW846 Method 9060.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Reported		Performance Acceptable		Not	
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

SVOCs - INTRODUCTION

Analyses were performed according to United Stated Environmental Protection Agency (USEPA) Method SW846 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region V Standard Operating Procedures (SOPs; USEPA Region V, 1993; 1997).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration Qualifiers

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- B The compound has been found in the sample as well as its associated blank; its presence in the sample may be suspect.

Quantitation Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- UB Compound considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

SVOCs - DATA VALIDATION SUMMARY

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4±2 °C
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4±2 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blank and field equipment rinse blanks) are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Laboratory method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

SVOC target compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the initial and continuing calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction (acid or base/neutral) exhibit recoveries within the laboratory-established acceptance limits.

Samples associated with surrogates exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Surrogate	Recovery
A2-12 (0-6"), A2-14 (0-6"), A2-15 (0-6"), A2-16 (0-6"), A2-17 (0-6"), A2-19 (0-6"), Field Duplicate #2, A5-7 (0-6"), A1-37 (0-6"), A1-41 (0-6"), A3-22 (0-6"), A3-21 (0-6"), and A3-24 (0-6")	Phenol-d ₅ 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d ₅ 2-Fluorobiphenyl Terphenyl-d ₁₄	D
A1-44 (0-6")	Phenol-d ₅ 2-Fluorophenol 2,4,6-Tribromophenol Nitrobenzene-d ₅ 2-Fluorobiphenyl Terphenyl-d ₁₄	AC

D Diluted below detection limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of two surrogate deviations within each fraction, the sample results associated with the deviant fraction are qualified as documented in the table below. In the case of one or more surrogate recoveries in a fraction < 10%, the qualification is applied.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> UL	Detect	J
all but > 100/	Non-detect	UJ
< LL but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
D – Surrogates diluted below the calibration curve due to	Non-detect	ı ¹
high analyte concentrations.	Detect	J

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

AC Acceptable

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the target SVOCs exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

Samples associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Internal Standard	Response
A1-41 (0-6"), A1-47 (0-6"), A3-20 (0-6"), Field Duplicate #5, A3-21 (0-6"), A3-24 (0-6")	Chrysene-d ₁₂ Perylene-d ₁₂	> UL
A1-46 (0-6"), A3-19 (0-6")	Perylene-d ₁₂	> UL

AC Acceptable

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated under the deviant internal standard are qualified as documented in the table below.

Control limit	Sample Result	Qualification
the upper central limit (III.)	Non-detect	No action
> the upper control limit (UL)	Detect J	J
the lower central limit (LL) but > 250/	Non-detect	UJ
< the lower control limit (LL) but > 25%	Detect	J
. 25%	Non-detect	R
< 25%	Detect	J

Note: No sample results were qualified as unusable (R) due to the deviations listed above.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD analyses performed on sample locations A1-43 (0-6) and A6-1 (0-6) exhibited acceptable recoveries. Samples associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery	
A2-17 (0-6)	All spiked compounds	D	D	

D Diluted below detection limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the upper control limit (OL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
D – Surrogates diluted below the calibration curve due to	Non-detect	J ¹
high analyte concentrations.	Detect	J ¹
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	INO ACTION

¹ A more concentrated analysis was not performed with matrix spike compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

The MS/MSD analysis performed on sample location A6-1 (0-6") exhibited acceptable RPDs between the MS and MSD. Samples associated with MS/MSD analyses exhibiting an RPD greater than the control limit are presented in the following table.

Sample Locations	Compound
A2-17 (0-6")	All spiked compounds (RPDs could not be determined due to dilution)
A1-43 (0-6")	Pyrene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
> 0L	Detect	J

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in mg/kg) for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	0.0064 J	0.033	AC
	Acenaphthylene	0.081	0.28	110.2 %
	Anthracene	0.091	0.17	60.5 %
	Benzo(a)anthracene	0.14	0.44	103.4 %
	Benzo(a)pyrene	0.18	0.57	104.0 %
	Benzo(b)fluoranthene	0.40	0.72	57.1 %
	Benzo(ghi)perylene	0.15	0.49	106.2 %
	Benzo(k)fluoranthene	0.37	0.28	27.7 %
A2-13 (0-6")/Field Duplicate #1	Chrysene	0.22	0.62	95.2 %
	Dibenzo(a,h)anthracene	0.044	0.10	AC
	Fluoranthene	0.26	1.4	137.3 %
	Fluorene	0.019 U	0.081	NC
	Indeno(1,2,3-cd)pyrene	0.13	0.40	101.8 %
	Naphthalene	0.020	0.16	155.5 %
	Pentachlorophenol	0.078 J	0.061	AC
	Phenanthrene	0.086	1.2	173.2 %
	Pyrene	0.23	1.1	130.8 %
	Acenaphthene	0.57	0.57	0.0 %
	Acenaphthylene	8.9	9.2	3.3 %
	Anthracene	32	26	20.6 %
	Benzo(a)anthracene	8.0	7.6	5.1 %
	Benzo(a)pyrene	17	17	0.0 %
	Benzo(b)fluoranthene	35	43	20.5 %
	Benzo(ghi)perylene	15	16	6.4 %
	Benzo(k)fluoranthene	13	39	101.0 %
A2-19 (0-6")/Field Duplicate #2	Chrysene	21	17	21.0 %
	Dibenzo(a,h)anthracene	5.7	5.1	11.1 %
	Fluoranthene	11	11	0.0 %
	Fluorene	3.1	1.5	69.5 %
	Indeno(1,2,3-cd)pyrene	16	16	0.0 %
	Naphthalene	1.2	1.1	8.6 %
	Pentachlorophenol	22	20	9.5 %
	Phenanthrene	6.0	3.0	66.6 %
	Pyrene	11	11	0.0 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	0.13	0.18	32.2 %
	Acenaphthylene	1.8	2.6	36.3 %
	Anthracene	2.2	3.0	30.7 %
	Benzo(a)anthracene	1.2	1.7	34.4 %
	Benzo(a)pyrene	2.3	3.6	44.0 %
	Benzo(b)fluoranthene	3.3	5.5	50.0 %
	Benzo(ghi)perylene	2.9	4.2	36.6 %
	Benzo(k)fluoranthene	1.5	1.9	23.5 %
A5-6 (0-6")/Field Duplicate #3	Chrysene	1.7	3	55.3 %
	Dibenzo(a,h)anthracene	0.67	1.1	48.5 %
	Fluoranthene	1.5	2.2	37.8 %
	Fluorene	0.20	0.27	29.7 %
	Indeno(1,2,3-cd)pyrene	2.4	3.6	40.0 %
	Naphthalene	0.089 J	0.14	44.5 %
	Pentachlorophenol	0.4 J	0.53 J	27.9 %
	Phenanthrene	0.35	0.50	35.2 %
	Pyrene	1.7	2.5	38.0 %
	Acenaphthene	0.0097 J	0.0069 J	AC
	Acenaphthylene	0.062	0.067	7.7 %
	Anthracene	0.11	0.087	23.3 %
	Benzo(a)anthracene	0.24	0.17	34.1 %
	Benzo(a)pyrene	0.17	0.16	6.0 %
	Benzo(b)fluoranthene	0.31	0.29	6.6 %
	Benzo(ghi)perylene	0.12	0.14	15.3 %
A1-44 (0-6")/Field Duplicate #4	Benzo(k)fluoranthene	0.14	0.18	25.0 %
	Chrysene	0.28	0.24	15.3 %
	Dibenzo(a,h)anthracene	0.041	0.046	11.4 %
	Fluoranthene	0.63	0.39	47.0 %
	Fluorene	0.0086 J	0.0086 J	AC
	Indeno(1,2,3-cd)pyrene	0.12	0.14	15.3 %
	Naphthalene	0.12	0.086	33.0 %
	Pentachlorophenol	0.021 J	0.04 J	AC
	Phenanthrene	0.48	0.23	70.4 %
	Pyrene	0.38	0.26	37.5 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	0.0081 J	0.0079 J	AC
	Acenaphthylene	0.064	0.070	8.9 %
	Anthracene	0.074	0.082	10.2 %
	Benzo(a)anthracene	0.11	0.11	0.0 %
	Benzo(a)pyrene	0.12	0.13	8.0 %
	Benzo(b)fluoranthene	0.21	0.25	17.3 %
	Benzo(ghi)perylene	0.15	0.18	18.1 %
	Benzo(k)fluoranthene	0.097	0.084	14.4 %
A3-20 (0-6")/Field Duplicate #5	Chrysene	0.13	0.15	14.2 %
	Dibenzo(a,h)anthracene	0.035	0.035	0.0 %
	Fluoranthene	0.22	0.23	4.4 %
	Fluorene	0.0097 J	0.011 J	AC
	Indeno(1,2,3-cd)pyrene	0.13	0.16	20.6 %
	Naphthalene	0.018 J	0.016 J	AC
	Pentachlorophenol	0.037 J	0.053 J	AC
	Phenanthrene	0.074	0.073	1.3 %
	Pyrene	0.15	0.16	6.4 %
	Acenaphthene	0.0089 J	0.02 U	AC
	Acenaphthylene	0.035	0.020	54.5 %
	Anthracene	0.038	0.026	37.5 %
	Benzo(a)anthracene	0.11	0.081	30.3 %
	Benzo(a)pyrene	0.13	0.11	16.6 %
	Benzo(b)fluoranthene	0.30	0.25	18.1 %
A4-8 (0-6")/Field Duplicate #6	Benzo(ghi)perylene	0.14	0.12	15.3 %
	Benzo(k)fluoranthene	0.26	0.22	16.7 %
A4-0 (0-0)/1 leid Duplicate #0	Chrysene	0.18	0.16	11.7 %
AC Acceptable	Dibenzo(a,h)anthracene	0.030	0.029	3.3 %
	Fluoranthene	0.26	0.23	12.2 %
	Fluorene	0.006 J	0.0066 J	AC
	Indeno(1,2,3-cd)pyrene	0.13	0.12	8.0 %
	Naphthalene	0.023	0.011 J	AC
	Phenanthrene	0.11	0.087	23.3 %
	Pyrene	0.17	0.14	19.3 %

AC Acceptable
ND Not detected
NC Not compliant

The compounds acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(ghi)perylene, fluorene, fluoranthene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene associated with sample locations A2-13 (0-6") and Field Duplicate #1 exhibited RPDs and/or differences greater than the control limit. The compound benzo(k)fluoranthene associated with sample locations A2-19 (0-6") and Field Duplicate #2 exhibited a RPD greater than the control limit. The associated sample results from sample locations for the listed compounds were qualified as estimated ("J") or estimated not detected ("UJ").

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. Sample results (in mg/kg) associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
A1-37 (0-6")	Fluoranthene	60 E	85 D	85 D
	Pyrene	49 E	58 D	58 D
	Benzo(b)fluoranthene	51 E	52 D	52 D

Results for compounds that did not exceed the calibration range (flagged "E") from the original analysis of sample location A1-37 (0-6") have been retained in preference to those from the higher dilution analysis.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

The isomers benzo(b)fluoranthene and benzo(k)fluoranthene associated with sample locations A2-11(0-6"), A2-13(0-6"), A2-15(0-6"), A2-16(0-6"), A2-17(0-6"), Field Duplicate #2, A1-37(0-6"), A1-38(0-6"), A1-39(0-6"), A3-23(0-6"), A6-3(0-6"), A4-7(0-6"), A4-8(0-6"), A4-5(0-6"), and Field Duplicate #6 could not be chromatographically resolved from each other. The laboratory quantitated the peak as benzo(b)fluoranthene and reported benzo(k)fluoranthene as non-detect. The benzo(k)fluoranthene concentrations for these sample locations have been calculated from the peak area identified as benzo(b)fluoranthene using the appropriate benzo(k)fluoranthene response factor. Both compounds have been reported due to the lack of chromatographic resolution and the reported benzo(b)fluoranthene and benzo(k)fluoranthene concentrations have been qualified as ("JY") indicating the compounds could not be resolved.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

SVOCs - DATA VALIDATION CHECKLIST

SVOCs: SW-846 8270	Repo	rted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	RY (GC/MS	5)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х	Х		
Field/Laboratory Duplicate Sample RPD		Х	Х		
Surrogate Spike %R		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х	Х		
Compound identification and quantitation	1		•	•	•
A. Reconstructed ion chromatograms		Х	Х	Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Χ		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

%RSD Relative standard deviation %R

Percent recovery
Relative percent difference RPD

Percent difference %D

METALS AND TOC – INTRODUCTION

Analyses were performed according to USEPA SW-846 Method 6010B, 9060, and Walkley-Black method. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).

Quantitation Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS – DATA VALIDATION SUMMARY

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cooled to 4±2 °C; pH < 2 with HNO ₃ .
	Soil	180 days from collection to analysis	Cooled to 4±2 °C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant analytes are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL. Therefore, qualification of the sample results was unnecessary.

3. Calibration

Satisfactory instrument calibration is established to provide that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instruments' continuing performance is satisfactory.

3.1 Initial Calibration and Continuing Calibration

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 for all non-ICP analytes and all initial calibration verification standard recoveries were within control limits.

All continuing calibration verification standard recoveries were within the control limit.

3.2 CRDL Check Standard

The CRDL check standard serves to verify the linearity of calibration of the analysis at the CRDL. The CRDL standard is not required for the analysis of aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), and potassium (K). The criteria used to evaluate the CRDL standard analysis are presented below in the CRDL standards evaluation table.

All CRDL standard recoveries were within control limits.

3.3 ICP Interference Control Sample (ICS)

The ICS verifies the laboratories inter-element and background correction factors.

All ICS exhibited recoveries within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

Sample Location	Analytical Batch	Analyte	MS Recovery	MSD Recovery
A2-17 (0-6")	0097431	Chromium	14	29

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this analytical batch.

Control limit	Sample Result	Qualification
MS/MSD percent recovery 30% to 74%	Non-detect	UJ
Wishwish percent recovery 30% to 74%	Detect	J
MS/MSD percent recovery < 30%	Non-detect	R
Wishing Dercent recovery < 50%	Detect	J
MS/MSD paraent recovery > 1259/	Non-detect	No Action
MS/MSD percent recovery > 125%	Detect	J

5. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
	Arsenic	12.1	12.6	4.0 %
A2-13 (0-6")/Field Duplicate #1	Chromium	17.1	19.2	11.5 %
	Copper	45.8	65	34.6 %
	Arsenic	50.4	35.8	33.8 %
A2-19 (0-6")/Field Duplicate #2	Chromium	154	153	0.6 %
	Copper	39	42.1	7.6 %
	Arsenic	6.5	6.4	1.5 %
A5-6 (0-6")/Field Duplicate #3	Chromium	20.2	21.2	4.8 %
	Copper	24.3	26.8	9.7 %
	Arsenic	11.6	14.1	19.4 %
A1-44 (0-6")/Field Duplicate #4	Chromium	18.6	14.5	24.7 %
	Copper	12.5	12.2	2.4 %
	Arsenic	11	10.8	1.8 %
A3-20 (0-6")/Field Duplicate #5	Chromium	25.4	23.6	7.3 %
	Copper	34.1	32.4	5.1 %
	Arsenic	7.1	6.7	5.7 %
A4-8 (0-6")/Field Duplicate #6	Chromium	18.2	18.9	3.7 %
	Copper	24.6	23.8	3.3 %

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. Serial Dilution

The serial dilution analysis is used to assess if a significant physical or chemical interference exists due to sample matrix. Analytes exhibiting concentrations greater than 50 times the MDL in the undiluted sample are evaluated to determine if matrix interference exists. These analytes are required to have less than a 10% difference (%D) between sample results from the undiluted (parent) sample and results associated with the same sample analyzed with a five-fold dilution.

Serial dilution analyses were not reported in the data package.

8. Furnace Analysis QC

No furnace analyses were performed on the samples.

9. Method of Standard Additions (MSA)

No samples were analyzed following the method of standard additions.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

METALS - DATA VALIDTION CHECKLIST

METALS; SW-846 6000/7000 Repo		orted		mance ptable	Not
·	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spectr Atomic Absorption – Manual Cold Vapor (CV)	ometry (I	CP)			
Tier II Validation					
Holding Times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Instrument Blanks		Х		Х	
B. Method Blanks		Х		Х	
C. Equipment/Field Blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		X		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		X	Х		
Matrix Spike Duplicate (MSD) %R		X	Х		
MS/MSD RPD		X		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
ICP Serial Dilution					X
Reporting Limit Verification		X		Х	
Raw Data		X		Х	
Tier III Validation					
Initial Calibration Verification		Х		Х	
Continuing Calibration Verification		Х		Х	
CRDL Standard		Х		Х	
ICP Interference Check		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions		Х		Х	

%R

Percent recovery
Relative percent difference RPD

TOC – DATA VALIDATION CHECKLIST

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Organic Carbon (TOC) by Walkley-Black	Soil	28 days from collection to analysis	Cooled @ 4±2 °C
Total Organic Carbon by USEPA SW846 9060	Water	28 days from collection to analysis	Cooled @ 4±2 °C; preserved to pH < 2 with H ₂ SO ₄ .

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The initial calibration must exhibit a correlation coefficient greater than 0.995. A technical review of the data applies limits to all analytes with no exceptions.

All target analytes associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All analytes associated with the initial and continuing calibrations were within the specified control limits. The correct frequency and type of standards were analyzed.

4. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to five times the reporting limit (RL). A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. For the cases when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of one times the RL is applied for water matrices and two times the RL for soil matrices.

The laboratory duplicate sample results exhibited RPDs within the control limit.

5. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in mg/kg) for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
A2-19 (0-6")/Field Duplicate #2	TOC	31600	35000	10.2 %
A5-6 (0-6")/Field Duplicate #3	TOC	28400	27700	2.4 %
A1-44 (0-6")/Field Duplicate #4	TOC	24300	17400	33.0 %
A3-20 (0-6")/Field Duplicate #5	TOC	28200	34900	21.2 %

The calculated RPDs between the field duplicate samples were acceptable.

6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

TOC – DATA VALIDATION CHECKLIST

General Chemistry: TOC – Walkley-Black TOC – USEPA SW-846 9060		orted		Performance Acceptable	
100 - 00L1 A 0W-040 3000	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R					Х
Matrix Spike Duplicate (MSD) %R					Х
MS/MSD RPD					Х
Field/Laboratory Duplicate Sample RPD		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data		Х		Х	
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions %RSD – relative standard deviation		Х		Х	

[%]RSD – relative standard deviation %R – percent recovery RPD – relative percent difference %D – difference

VALIDATION PERFORMED BY: Dennis Dyke

SIGNATURE:

DATE: May 10, 2010

PEER REVIEW: Dennis Capria

DATE: May 17, 2010

Beazer East, Inc. Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

PCDDs/PCDFs Analyses

SDG # 32549

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #12083 Review Level: Tier III

Project: B0039208.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 32549 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating Site in Carbondale, Illinois. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Analyses were performed on the following samples:

			Sample		Analysis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	PCDDs/PCDFs
A2-12 (0-6")	32549-001	Sediment	3/29/2010		Х
RB032910	32549-002	Water	3/29/2010		Х
A2-11 (0-6")	32549-003	Sediment	3/29/2010		Х
A2-13 (0-6")	32549-004	Soil	3/29/2010		X
Field Duplicate #1	32549-005	Soil	3/29/2010	A2-13 (0-6")	Χ
A2-14 (0-6")	32549-006	Soil	3/29/2010		Χ
A2-15 (0-6")	32549-007	Soil	3/29/2010		Χ
A2-16 (0-6")	32549-008	Soil	3/29/2010		Χ
A2-17 (0-6")	32549-009	Soil	3/29/2010		Χ
A2-18 (0-6")	32549-010	Soil	3/29/2010		Х
A2-19 (0-6")	32549-011	Sediment	3/29/2010		Χ
NPL (0-6")	32549-012	Soil	3/29/2010		Χ
A5-6 (0-6")	32549-013	Sediment	3/30/2010		Χ
Field Duplicate #2	32549-014	Sediment	3/30/2010	A5-6 (0-6")	Х
A5-7 (0-6")	32549-015	Sediment	3/30/2010		Х
A1-37 (0-6")	32549-016	Soil	3/30/2010		Х
Field Duplicate #3	32549-017	Sediment	3/30/2010	A1-37 (0-6")	Х
A1-36 (0-6")	32549-018	Soil	3/30/2010		Х
A1-38 (0-6")	32549-019	Soil	3/30/2010		Х
A1-39 (0-6")	32549-020	Soil	3/30/2010		Х

- 1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location A2-15 (0-6").
- 2. Sample results were reported on a dry-weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported			mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Χ	
7.	Laboratory sample received date		Х		Χ	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

PCDDs/PCDFs - INTRODUCTION

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290. Data were reviewed in accordance with USEPA National Functional Guidelines of January 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration Qualifiers

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- UB Compound considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

PCDDs/PCDFs - DATA VALIDATION SUMMARY

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW 946 9200	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C
SW-846 8290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C

The samples were received at the laboratory at temperatures that were less than the EPA-recommended criteria. Data qualification is unnecessary because the samples were not frozen. All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated equipment rinse blank; however, the associated sample results were greater than the BAL. Therefore, qualification of the sample results was not required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable; system performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

A maximum relative standard deviation (RSD) of 20% is allowed for all non-labeled compounds (target) and 30% is allowed for all labeled compounds (internal standards and recovery standards)

All target compounds associated with the continuing calibration standard must exhibited percent difference (%D) less than the control limit (20%).

All initial and continuing calibration criteria were within the control limits.

5. Internal Standard Performance

All samples to be analyzed for PCDD/PCDF compounds are spiked with internal standards prior to extraction. Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds exhibit recoveries within the control limits of 40% to 135%.

Sample locations associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Internal Standard	Response
A2-12 (0-6"), A2-11 (0-6"), A2-19 (0-6"), Field Duplicate #2, A5-7 (0-6"), A2-14 (0-6"), A2-16 (0-6"), and A2-17 (0-6")	¹³ C-OCDD	> UL
Field Duplicate #2, A5-7 (0-6"), A2-17 (0-6")	¹³ C-OCDF	> UL
A5-7 (0-6")	¹³ C-1,2,3,4,6,7,8-HpCDD	> UL

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated using the deviant internal standard are qualified as documented in the table below.

Control limit	Sample Result	Qualification
the upper central limit (LII.)	Non-detect	No action
> the upper control limit (UL)	Detect	J

6. Recovery Standard Performance

The recovery standard (³⁷Cl-2,3,7,8-TCDD) is added to the sample extract prior to the extract clean-up steps. The concentrations of the labeled standards (internal standards) are determined using the recovery standard.

All recovery standard recoveries were acceptable.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds spiked in the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent differences (RPDs) between the MS and MSD must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPDs.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent and the field duplicate samples. In the case where the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in mg/kg) for field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,4,6,7,8-HpCDD	0.001	0.00257	87.9 %
	1,2,3,4,6,7,8-HpCDF	0.000251	0.000611	83.5 %
	1,2,3,4,7,8,9-HpCDF	0.0000164	0.0000395	82.6 %
	1,2,3,4,7,8-HxCDD	0.0000132	0.00003	77.7 %
	1,2,3,4,7,8-HxCDF	0.00000839	0.0000218	88.8 %
	1,2,3,6,7,8-HxCDD	0.000029	0.0000726	85.8 %
	1,2,3,6,7,8-HxCDF	0.00000332 J	0.00000842	86.8 %
	1,2,3,7,8,9-HxCDD	0.0000125	0.0000308	84.5 %
	1,2,3,7,8,9-HxCDF	0.00000188 J	0.0000048 J	87.4 %
	1,2,3,7,8-PeCDD	0.00000363 J	0.00000755	70.1 %
	1,2,3,7,8-PeCDF	0.00000085 U	0.00000292 J	AC
	2,3,4,6,7,8-HxCDF	0.00000683	0.0000161	80.8 %
	2,3,4,7,8-PeCDF	0.00000287 J	0.00000715	85.4 %
A2-13 (0-6") /	2,3,7,8-TCDD	0.00000048 J	0.000000768 J	46.1 %
Field Duplicate #1	2,3,7,8-TCDF	0.00000123	0.00000226	59.0 %
	OCDD	0.0135 E	0.0351 E	88.8 %
	OCDF	0.00135	0.00319	81.0 %
	Total HpCDD	0.00202	0.00564	94.5 %
	Total HpCDF	0.00126	0.00337	91.1 %
	Total HxCDD	0.00028	0.000778	94.1 %
	Total HxCDF	0.000262	0.000729	94.2 %
	Total PeCDD	0.000108	0.000207	62.8 %
	Total PeCDF	0.0000315	0.000085	91.8 %
	Total TCDD	0.0000926	0.000119	24.9 %
	Total TCDF	0.0000233	0.0000478	68.9 %
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.0000297	0.0000729	84.2 %
	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.0000297	0.0000729	84.2 %

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,4,6,7,8-HpCDD	0.0099 E	0.015 E	40.9%
	1,2,3,4,6,7,8-HpCDF	0.00138	0.00235	52.0%
	1,2,3,4,7,8,9-HpCDF	0.000118	0.000173	37.8%
	1,2,3,4,7,8-HxCDD	0.0000812	0.000121	39.3%
	1,2,3,4,7,8-HxCDF	0.0000763	0.000105	31.6%
	1,2,3,6,7,8-HxCDD	0.000277	0.000405	37.5%
	1,2,3,6,7,8-HxCDF	0.0000246	0.0000361	37.8%
	1,2,3,7,8,9-HxCDD	0.000123	0.00019	42.8%
	1,2,3,7,8,9-HxCDF	0.0000224	0.0000256	13.3%
	1,2,3,7,8-PeCDD	0.0000325	0.0000443	30.7%
	1,2,3,7,8-PeCDF	0.00000621	0.00000719	14.6%
	2,3,4,6,7,8-HxCDF	0.0000615	0.0000779	23.5%
	2,3,4,7,8-PeCDF	0.0000355	0.0000416	15.8%
A5-6 (0-6") /	2,3,7,8-TCDD	0.00000399	0.00000434	8.4%
Field Duplicate #2	2,3,7,8-TCDF	0.00000155	0.00000188	19.2%
	OCDD	0.0949 E	0.167 D,E	55.0%
	OCDF	0.00743	0.00896 E	18.6%
	Total HpCDD	0.0255	0.037	36.8%
	Total HpCDF	0.00856	0.0128	39.7%
	Total HxCDD	0.00291	0.00368	23.3%
	Total HxCDF	0.00229	0.00268	15.6%
	Total PeCDD	0.000325	0.000414	24.0%
	Total PeCDF	0.000304 P	0.000352 P	14.6%
	Total TCDD	0.0000642	0.0000664	3.3%
	Total TCDF	0.000041 P	0.0000473 P	14.2%
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.000259	0.000386	39.3%
	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.000259	0.000386	39.3%
	1,2,3,4,6,7,8-HpCDD	0.0106	0.0154 E	36.9%
	1,2,3,4,6,7,8-HpCDF	0.00329	0.0054 E	48.5%
	1,2,3,4,7,8,9-HpCDF	0.000347	0.000558	46.6%
A4 27 (0 C") /	1,2,3,4,7,8-HxCDD	0.0000471 J	0.0000668	34.5%
A1-37 (0-6") / Field Duplicate #3	1,2,3,4,7,8-HxCDF	0.0000933	0.000137	37.9%
i ioid 2 apiiodio iio	1,2,3,6,7,8-HxCDD	0.000351	0.000542	42.7%
	1,2,3,6,7,8-HxCDF	0.0000394 J	0.0000364	7.9%
	1,2,3,7,8,9-HxCDD	0.0000669	0.000114	52.0%
	1,2,3,7,8,9-HxCDF	0.0000152 U	0.0000231	AC
	1,2,3,7,8-PeCDD	0.0000127 J	0.0000165	26.0%
	1,2,3,7,8-PeCDF	0.00000544 U	0.00000287 J	AC
	2,3,4,6,7,8-HxCDF	0.0000969	0.000128	27.6%
	2,3,4,7,8-PeCDF	0.00000611 U	0.0000101	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2,3,7,8-TCDD	0.00000212 U	0.00000191	AC
	2,3,7,8-TCDF	0.00000252 U	0.00000144	AC
	OCDD	0.086	0.146 *,E	51.7%
	OCDF	0.0272	0.0413 E	41.1%
	Total HpCDD	0.0205	0.0271	27.7%
	Total HpCDF	0.0295	0.0522	55.5%
	Total HxCDD	0.00204	0.00287	33.8%
	Total HxCDF	0.00497	0.00789 P	45.4%
	Total PeCDD	0.0000506	0.000123	83.4%
A1-37 (0-6") /	Total PeCDF	0.000178	0.000172 P	3.4%
Field Duplicate #3 (continued)	Total TCDD	0.0000339	0.0000598	55.2%
	Total TCDF	0.0000236	0.0000675	96.3%
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.000258	0.000396	42.2%
	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.000261	0.000396	41.0%

AC Acceptable

The calculated RPDs between the field duplicate samples were acceptable.

10. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise ratios, and retention times relative to the internal standards'.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in mg/kg) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
A2-13 (0-6")	1,2,3,7,8-PeCDF	0.000000850 EMPC	0.000000850 UX
A1-36 (0-6")	1,2,3,7,8-PeCDD	0.000000697 EMPC	0.000000697 UX
A1-30 (0-0)	1,2,3,6,7,8-HxCDF	0.000000971 EMPC	0.000000971 UX
A1-39 (0-6")	2,3,7,8-TCDD	0.00000134 EMPC	0.00000134 UX
A2-16 (0-6")	2,3,7,8-TCDF	0.00000752 EMPC	0.00000752 UX
A2-18 (0-6")	1,2,3,7,8-PeCDD	0.0000483 EMPC	0.0000483 UX
A4 27 (0 6")	2,3,7,8-TCDD	0.00000212 EMPC	0.00000212 UX
A1-37 (0-6")	2,3,4,7,8-PeCDF	0.00000611 EMPC	0.00000611 UX

The following results exhibited evidence of interference by chlorodiphenyl ethers. The results were flagged "P" by the laboratory indicating the result is the maximum concentrations of the analytes in the case that all of the quantified area is due to the target analyte and none due to the interference. Therefore, these results have been qualified as estimated ("J").

Sample ID	Compound
A2-12 (0-6")	1,2,3,6,7,8-HxCDF Total TCDF Total PeCDF Total HxCDF
A2-11 (0-6"), A2-19 (0-6"), A2-15 (0-6")	Total TCDF Total PeCDF Total HxCDF
A5-6 (0-6"), Field Duplicate #2, A5-7 (0-6")	Total TCDF Total PeCDF
Field Duplicate #3, A2-14 (0-6")	Total PeCDF Total HxCDF
A2-16 (0-6"), A2-17 (0-6")	Total HxCDF

Sample results that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table (mg/kg). Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result. Because the individual isomer results are included in the Total (hexa-, hepta-) results, where the isomer result has been qualified as estimated ("J") and constitutes greater than ten percent of the Total, the corresponding Total result has been qualified as estimated as well.

		Original	Diluted	Reported
Sample ID	Compound	Analysis	Analysis	Analysis
	1,2,3,4,6,7,8-HpCDD	0.148 E	_	0.148 EJ
	OCDD	0.627 E	_	0.627 EJ
A2-12 (0-6")	1,2,3,4,6,7,8-HpCDF	0.0247 E		0.0247 EJ
AZ-12 (0-0)	OCDF	0.119 E		0.119 EJ
	Total HpCDD	0.355		0.355 J
	Total HpCDF	0.141		0.141 J
	OCDD	0.573 ED	_	0.573 EDJ
A2 11 (0 6")	1,2,3,4,6,7,8-HpCDF	0.0121 E	_	0.0121 EJ
A2-11 (0-6")	OCDF	0.0613 E	_	0.0613 EJ
	Total HpCDF	0.0731	_	0.0731 J
	1,2,3,6,7,8-HxCDD	0.00697 E	_	0.00697 EJ
	1,2,3,4,6,7,8-HpCDD	0.262 ED	_	0.262 EDJ
	OCDD	0.709 ED	_	0.709 EDJ
A2 10 (0 6")	1,2,3,4,6,7,8-HpCDF	0.0381 E	_	0.0381 EJ
A2-19 (0-6")	OCDF	0.186 E	_	0.186 EJ
	Total HxCDD	0.0601	_	0.0601 J
	Total HpCDD	0.620	_	0.620 J
	Total HpCDF	0.210	_	0.210 J
	1,2,3,4,6,7,8-HpCDD	0.0099 E	_	0.0099 EJ
A5-6 (0-6")	OCDD	0.0949 E	_	0.0949 EJ
	Total HpCDD	0.0255	_	0.0255 J
	1,2,3,4,6,7,8-HpCDD	0.015 E	_	0.015 EJ
Field Duplicate #2	OCDD	0.167 ED	_	0.167 EDJ
Field Duplicate #2	OCDF	0.00896 E	_	0.00896 EJ
	Total HpCDD	0.0370	<u> </u>	0.0370 J

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
	1,2,3,4,6,7,8-HpCDD	0.0235 E	_	0.0235 EJ
	OCDD	0.214 ED	_	0.214 EDJ
A5-7 (0-6")	1,2,3,4,6,7,8-HpCDF	0.00434 E	_	0.00434 EJ
A5-7 (0-6)	OCDF	0.0178 E		0.0178 EJ
	Total HpCDD	0.0543	_	0.0543 J
	Total HpCDF	0.0277		0.0277 J
A2-13 (0-6")	OCDD	0.0135 E	_	0.0135 EJ
Field Duplicate #1	OCDD	0.0351 E	_	0.0351 EJ
	1,2,3,4,6,7,8-HpCDD	0.0798 ED	_	0.0798 EDJ
	OCDD	0.537 ED	_	0.537 EDJ
A2-15 (0-6")	1,2,3,4,6,7,8-HpCDF	0.0105 E	_	0.0105 EJ
	Total HpCDD	0.235 D	_	0.235 DJ
	Total HpCDF	0.0727	_	0.0727 J
	1,2,3,4,6,7,8-HpCDD	0.0154 E	_	0.0154 EJ
	OCDD	0.146 E	_	0.146 EJ
Field Duplicate #3	1,2,3,4,6,7,8-HpCDF 0.00054		_	0.00054 EJ
Field Duplicate #3	OCDF 0.0413 E		_	0.0413 EJ
	Total HpCDD	Total HpCDD 0.0271		0.0271 J
	Total HpCDF	0.0522	_	0.0522 J
A1-36 (0-6")	OCDD	0.00883 E	_	0.00883 EJ
A1-39 (0-6")	OCDD	0.0308 E	_	0.0308 EJ
	1,2,3,4,6,7,8-HpCDD	0.296 E	_	0.296 EJ
A2 14 (0 6")	OCDD	4.85 ED	_	4.85 EDJ
A2-14 (0-6")	OCDF	0.202 E	_	0.202 EJ
	Total HpCDD	0.570	_	0.570 J
	1,2,3,4,6,7,8-HpCDD	0.252 E	_	0.252 EJ
A2 16 (0.6")	OCDD	3.27 ED	_	3.27 EDJ
A2-16 (0-6")	OCDF	0.158 E	_	0.158 EJ
	Total HpCDD	0.757	_	0.757 J
	1,2,3,4,6,7,8-HpCDD	0.181 ED		0.181 EDJ
A2-17 (0-6")	OCDD	2.63 ED	_	2.63 EDJ
AZ-11 (U-0)	OCDF	0.130 E	_	0.130 EJ
	Total HpCDD	0.368	_	0.368 J
A2-18 (0-6")	OCDD	0.583 E		0.583 EJ

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

PCDDs/PCDFs - DATA VALIDATION CHECKLIST

PCDDs/PCDFs; SW-846 8290		Reported		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	ΓRY (GC/I	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					X
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio ≥ 10:1		Х		Х	
Internal standard performance		Х	Х		
Recovery standard performance		Х		Х	
Resolution mix ≤ 25%		Х		Х	
Compound identification and quantitation		•	•	•	
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

RSD - relative standard deviation

[%]R - percent recovery
RPD - relative percent difference
%D – difference

VALIDATION PERFORMED BY: Dennis Dyke

SIGNATURE:

DATE: May 11, 2010

PEER REVIEW: Dennis Capria

DATE: May 17, 2010

Beazer East, Inc. Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

PCDDs/PCDFS Analyses

SDG # 32550

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #12089 Review Level: Tier III

Project: B0039208.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 32550 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating Site in Carbondale, Illinois. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Analyses were performed on the following samples:

			Sample	Danant	Analysis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	PCDDs/PCDFs
RB033010	32550-001	Water	3/30/2010		Х
RB033110	32550-002	Water	3/31/2010		Х
A1-35 (0-6")	32550-003	Soil	3/30/2010		Х
A1-40 (0-6")	32550-004	Soil	3/30/2010		Х
A1-41 (0-6")	32550-005	Soil	3/30/2010		Χ
A1-42 (0-6")	32550-006	Soil	3/30/2010		Х
A1-43 (0-6")	32550-007	Sediment	3/30/2010		Х
A1-44 (0-6")	32550-008	Sediment	3/30/2010		Х
A1-47 (0-6")	32550-009	Sediment	3/30/2010		Х
A1-45 (0-6")	32550-010	Soil	3/30/2010		Х
A1-46 (0-6")	32550-011	Sediment	3/30/2010		Х
A1-48 (0-6")	32550-012	Sediment	3/30/2010		Χ
A3-20 (0-6")	32550-013	Sediment	3/30/2010		Х
Field Duplicate #4	32550-014	Sediment	3/30/2010	A3-20 (0-6")	Х
A3-18 (0-6")	32550-015	Sediment	3/30/2010		Х
A3-19 (0-6")	32550-016	Sediment	3/30/2010		Х
A3-23 (0-6")	32550-017	Sediment	3/30/2010		Х
A3-22 (0-6")	32550-018	Sediment	3/30/2010		Х
A3-21 (0-6")	32550-019	Sediment	3/30/2010		Х
A3-24 (0-6")	32550-020	Sediment	3/30/2010		Χ

- 1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location A1-48 (0-6").
- 2. Sample results were reported on a dry-weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Χ	
7.	Laboratory sample received date		Х		Χ	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Χ	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

PCDDs/PCDFs - INTRODUCTION

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290. Data were reviewed in accordance with USEPA National Functional Guidelines of January 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration Qualifiers

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- UB Compound considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

PCDDs/PCDFs - DATA VALIDATION SUMMARY

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	thod Matrix Holding Time		Preservation
SW 946 9200	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C
SW-846 8290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C

The samples were received at the laboratory at temperatures that were less than the EPA-recommended criteria. Data qualification is unnecessary because the samples were not frozen. All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated equipment rinse blanks; however, the associated sample results were either greater than the BAL or non-detect. Therefore, qualification of the sample results was not required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable; system performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

A maximum relative standard deviation (RSD) of 20% is allowed for all non-labeled compounds (target) and 30% is allowed for all labeled compounds (internal standards and recovery standards)

All target compounds associated with the continuing calibration standard must exhibited percent difference (%D) less than the control limit (20%).

All initial and continuing calibration criteria were within the control limits.

5. Internal Standard Performance

All samples to be analyzed for PCDD/PCDF compounds are spiked with internal standards prior to extraction. Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds exhibit recoveries within the control limits of 40% to 135%.

Sample locations associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Sample Locations Internal Standard	
A3-22 (0-6") and A3-21 (0-6")	¹³ C-OCDD	> UL

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated using the deviant internal standard are qualified as documented in the table below.

Control limit	Sample Result	
the upper central limit (LII.)	Non-detect	No action
> the upper control limit (UL)	Detect	J

6. Recovery Standard Performance

The recovery standard (³⁷Cl-2,3,7,8-TCDD) is added to the sample extract prior to the extract clean-up steps. The concentrations of the labeled standards (internal standards) are determined using the recovery standard.

All recovery standard recoveries were acceptable.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds spiked in the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent differences (RPDs) between the MS and MSD must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
	1,2,3,6,7,8-HxCDD	< LL but > 10%	< LL but > 10%
A1-48 (0-6")	1,2,3,4,7,8-HxCDF	< 10%	< 10%
	2,3,4,7,8-PeCDF	AC	< LL but > 10%

AC = Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (LIII.)	Non-detect	No Action
> the upper control limit (UL)	Detect	
the lower central limit (LL) but a 100/	Non-detect	J
< the lower control limit (LL) but > 10%	Detect	J
. 400/	Non-detect	R
< 10%	Detect	J

The MS/MSD exhibited acceptable RPDs between the MS and MSD.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent and the field duplicate samples. In the case where the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in mg/kg) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,4,6,7,8-HpCDD	0.00415 E	0.00443 E	6.5%
	1,2,3,4,6,7,8-HpCDF	0.000815	0.000925	12.6%
A3-20 (0-6") /	1,2,3,4,7,8,9-HpCDF	0.0000607	0.0000672	10.1%
Field Duplicate #4	1,2,3,4,7,8-HxCDD	0.0000377	0.0000408	7.8%
	1,2,3,4,7,8-HxCDF	0.0000465	0.0000542	15.2%
	1,2,3,6,7,8-HxCDD	0.000118	0.000133	11.9%

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,6,7,8-HxCDF	0.0000223	0.0000233	4.3%
	1,2,3,7,8,9-HxCDD	0.0000699	0.0000725	3.6%
	1,2,3,7,8,9-HxCDF	0.000011	0.0000119	7.8%
	1,2,3,7,8-PeCDD	0.0000144	0.0000162	11.7%
	1,2,3,7,8-PeCDF	0.00000377 J	0.00000447 J	16.9%
	2,3,4,6,7,8-HxCDF	0.000041	0.0000489	17.5%
A3-20 (0-6") /	2,3,4,7,8-PeCDF	0.0000256	0.0000306	17.7%
Field Duplicate #4	2,3,7,8-TCDD	0.0000018 U	0.00000243	AC
(Continued)	2,3,7,8-TCDF	0.0000019	0.00000264	32.5%
	OCDD	0.0491 E	0.0518 E	5.3%
	OCDF	0.00366	0.00395	7.6%
	Total HpCDD	0.00851	0.00898	5.3%
	Total HpCDF	0.00391	0.0042	7.1%
	Total HxCDD	0.000884	0.00097	9.2%
	Total HxCDF	0.000991	0.00113	13.1%
	Total PeCDD	0.000108	0.000114	5.4%
	Total PeCDF	0.000277	0.000309	10.9%
	Total TCDD	0.0000251	0.0000285	12.6%
	Total TCDF	0.0000691	0.0000818	16.8%
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.000123	0.000138	11.4%
AC Acceptable	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.000124	0.000138	10.6%

AC Acceptable

The calculated RPDs between the field duplicate samples were acceptable.

10. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise ratios, and retention times relative to the internal standards'.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in mg/kg) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
	1,2,3,7,8-PeCDD	0.00000146 EMPC	0.00000146 UX
A1-35 (0-6")	2,3,7,8-TCDF	0.000000831 EMPC	0.000000831 UX
A1-35 (0-6)	1,2,3,7,8-PeCDF	0.000000705 EMPC	0.000000705 UX
	2,3,4,6,7,8-HxCDF	0.00000168 EMPC	0.00000168 UX
A1-40 (0-6")	1,2,3,7,8-PeCDD	0.00000290 EMPC	0.00000290 UX
A1-40 (0-6)	2,3,7,8-TCDF	0.000000478 EMPC	0.000000478 UX
A1-41 (0-6")	1,2,3,7,8-PeCDF	0.00000108 EMPC	0.00000108 UX
	2,3,7,8-TCDD	0.000000316 EMPC	0.000000316 UX
	1,2,3,7,8-PeCDD	0.000000882 EMPC	0.000000882 UX
A1-42 (0-6")	1,2,3,4,7,8-HxCDD	0.00000189 EMPC	0.00000189 UX
	2,3,4,7,8-PeCDF	0.000000778 EMPC	0.000000778 UX
	1,2,3,4,7,8,9-HpCDF	0.000000888 EMPC	0.000000888 UX
	2,3,7,8-TCDD	0.000000334 EMPC	0.000000334 UX
A4 42 (0 6")	Total TCDD	0.000000334 EMPC	0.000000334 UX
A1-43 (0-6")	Total PeCDD	0.00000234 EMPC	0.00000234 UX
	Total PeCDF	0.000000446 EMPC	0.000000446 UX
	1,2,3,4,7,8-HxCDD	0.00000166 EMPC	0.00000166 UX
A1-47 (0-6")	2,3,7,8-TCDF	0.000000716 EMPC	0.000000716 UX
	Total TCDD	0.000000282 EMPC	0.000000282 UX
A1-45 (0-6")	2,3,7,8-TCDD	0.000000676 EMPC	0.000000676 UX
A1-45 (0-6)	Total TCDD	0.000000676 EMPC	0.000000676 UX
A1-46 (0-6")	Total TCDF	0.000000639 EMPC	0.000000639 UX
A3-20 (0-6")	2,3,7,8-TCDD	0.00000180 EMPC	0.00000180 UX
A3-18 (0-6")	1,2,3,6,7,8-HxCDD	0.00000269 EMPC	0.00000269 UX
A3-10 (0-0)	Total TCDF	0.000000365 EMPC	0.000000365 UX
A3-19 (0-6")	2,3,7,8-TCDD	0.000000854 EMPC	0.000000854 UX
A3-19 (0-0)	1,2,3,7,8-PeCDF	0.00000245 EMPC	0.00000245 UX

The following results exhibited evidence of interference by chlorodiphenyl ethers. The results were flagged "P" by the laboratory indicating the result is the maximum concentrations of the analytes in the case that all of the quantified area is due to the target analyte and none due to the interference. Therefore, these results have been qualified as estimated ("J").

Sample ID	Compound
A3-21 (0-6")	Total PeCDF Total HxCDF
A3-24 (0-6")	Total TCDF Total PeCDF

Sample results that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table (mg/kg). Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result. Because the individual isomer results are included in the Total (hexa-, hepta-) results, where the isomer result has been qualified as estimated ("J") and constitutes greater than ten percent of the Total, the corresponding Total result has been qualified as estimated as well.

		Original	Diluted	Reported
Sample ID	Compound	Analysis	Analysis	Analysis
A1-35 (0-6")	OCDD	0.0125 E	_	0.0125 EJ
A1-41 (0-6")	OCDD	0.0283 E	_	0.0283 EJ
A1-42 (0-6")	OCDD	0.00928 E	_	0.00928 EJ
A1-44 (0-6")	OCDD	0.0103 E	_	0.0103 EJ
	1,2,3,4,6,7,8-HpCDD	0.00613 E	_	0.00613 EJ
A1-48 (0-6")	OCDD	0.0891 ED		0.0891 EDJ
	Total HpCDD	0.0123	_	0.0123 J
	1,2,3,4,6,7,8-HpCDD	0.00415 E		0.00415 EJ
A3-20 (0-6")	OCDD	0.0491 E		0.0491 EJ
	Total HpCDD	0.00851		0.00851 J
	1,2,3,4,6,7,8-HpCDD	0.00443 E		0.00443 EJ
Field Duplicate #4	OCDD	0.0518 E	_	0.0518 EJ
	Total HpCDD	0.00898	_	0.00898 J
A3-19 (0-6")	OCDD	0.0238 E	_	0.0238 EJ
	1,2,3,4,6,7,8-HpCDD	0.0172 E	_	0.0172 EJ
	OCDD	0.137 ED	_	0.137 EDJ
A 2 22 (0 6")	1,2,3,4,6,7,8-HpCDF	0.00451 E	_	0.00451 EJ
A3-23 (0-6")	OCDF	0.0189 E	_	0.0189 EJ
	Total HpCDD	0.0447	_	0.0447 J
	Total HpCDF	0.0316	_	0.0316 J
	1,2,3,4,6,7,8-HpCDD	0.105 ED	_	0.105 EDJ
	OCDD	0.471 ED	_	0.471 EDJ
A 2 22 (0 C")	1,2,3,4,6,7,8-HpCDF	0.0237 E	_	0.0237 EJ
A3-22 (0-6")	OCDF	0.0982 E	_	0.0982 EJ
	Total HpCDD	0.223	_	0.223 J
	Total HpCDF	0.150	_	0.150 J
	1,2,3,6,7,8-HxCDD	0.0496 E	_	0.0496 EJ
	1,2,3,4,6,7,8-HpCDD	0.160 ED	_	0.160 EDJ
	OCDD	0.570 ED	_	0.570 EDJ
A 2 04 (0 C")	1,2,3,4,6,7,8-HpCDF	0.0406 E	_	0.0406 EJ
A3-21 (0-6")	OCDF	0.207 E	_	0.207 EJ
	Total HxCDD	0.0473		0.0473 J
	Total HpCDD	0.365		0.365 J
	Total HpCDF	0.277		0.277 J
	1,2,3,4,6,7,8-HpCDD	0.117 ED	_	0.117 EDJ
	OCDD	0.524 ED	_	0.524 EDJ
	1,2,3,4,7,8-HxCDF	0.00774 E	_	0.00774 EJ
A O O A (O O!!)	1,2,3,4,6,7,8-HpCDF	0.0268 E	_	0.0268 EJ
A3-24 (0-6")	OCDF	0.100 E	_	0.100 EJ
	Total HpCDD	0.241	_	0.241 J
	Total HxCDF	0.0622	_	0.0622 J
	Total HpCDF	0.161	_	0.161 J

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

PCDDs/PCDFs - DATA VALIDATION CHECKLIST

PCDDs/PCDFs; SW-846 8290		orted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		X	
Reporting limits (units)		X		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio > 10:1		Х		Х	
Internal standard performance		Х	Х		
Recovery standard performance		Х		Х	
Resolution mix ≤ 25%		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		Х	

RSD – relative standard deviation %R - percent recovery RPD - relative percent difference

%D – difference

VALIDATION PERFORMED BY: Dennis Dyke

SIGNATURE:

DATE: May 11, 2010

PEER REVIEW: Dennis Capria

DATE: May 17, 2010

Beazer East, Inc. Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

PCDDs/PCDFs Analyses

SDG # 32551

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #12090 Review Level: Tier III

Project: B0039208.0000.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 32551 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating Site in Carbondale, Illinois. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Analyses were performed on the following samples:

			Sample	Danant	Analysis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	PCDDs/PCDFs
A6-1 (0-6")	32551-001	Sediment	3/31/2010		Х
A6-2 (0-6")	32551-002	Sediment	3/31/2010		Х
A6-3 (0-6")	32551-003	Sediment	3/31/2010		Х
A6-4 (0-6")	32551-004	Soil	3/31/2010		Х
A6-5 (0-6")	32551-005	Sediment	3/31/2010		Х
Field Duplicate #5	32551-006	Soil	3/31/2010	A6-5 (0-6")	Х
A4-7 (0-6")	32551-007	Sediment	3/31/2010		Х
A4-8 (0-6")	32551-008	Soil	3/31/2010		Х
Field Duplicate #6	32551-009	Soil	3/31/2010	A4-8 (0-6")	Х
A4-9 (0-6")	32551-010	Soil	3/31/2010		Х
A4-10 (0-6")	32551-011	Soil	3/31/2010		Х
A6-6 (0-6")	32551-012	Sediment	3/31/2010		Х
A6-7 (0-6")	32551-013	Soil	3/31/2010		Х
A6-8 (0-6")	32551-014	Soil	3/31/2010		Х
A4-5 (0-6")	32551-015	Soil	3/31/2010		Х
A4-6 (0-6")	32551-016	Sediment	3/31/2010		X
A4-4 (0-6")	32551-017	Sediment	3/31/2010		Х
A4-1 (0-6")	32551-018	Sediment	3/31/2010		Х
A4-2 (0-6")	32551-019	Soil	3/31/2010		Х
A4-3 (0-6")	32551-020	Soil	3/31/2010		X

- 1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location A6-1 (0-6").
- 2. Sample results were reported on a dry-weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		X	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		X	
7.	Laboratory sample received date		Х		X	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

PCDDs/PCDFs - INTRODUCTION

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290. Data were reviewed in accordance with USEPA National Functional Guidelines of January 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration Qualifiers

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.

Quantitation Qualifiers

- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.

Validation Qualifiers

- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- UB Compound considered non-detect at the listed value due to associated blank contamination.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

PCDDs/PCDFs - DATA VALIDATION SUMMARY

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Water		30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C
SW-846 8290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cooled @ 4±2 °C

The samples were received at the laboratory at temperatures that were less than the EPA-recommended criteria. Data qualification is unnecessary because the samples were not frozen. All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated equipment rinse blank (which was analyzed with SDG 32550); however, the associated sample results were either greater than the BAL or non-detect. Therefore, qualification of the sample results was not required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable; system performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

A maximum relative standard deviation (RSD) of 20% is allowed for all non-labeled compounds (target) and 30% is allowed for all labeled compounds (internal standards and recovery standards)

All target compounds associated with the continuing calibration standard must exhibited percent difference (%D) less than the control limit (20%).

All initial and continuing calibration criteria were within the control limits.

5. Internal Standard Performance

All samples to be analyzed for PCDD/PCDF compounds are spiked with internal standards prior to extraction. Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds exhibit recoveries within the control limits of 40% to 135%.

All internal standard areas and retention times were within established limits.

6. Recovery Standard Performance

The recovery standard (³⁷Cl-2,3,7,8-TCDD) is added to the sample extract prior to the extract clean-up steps. The concentrations of the labeled standards (internal standards) are determined using the recovery standard.

All recovery standard recoveries were acceptable.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds spiked in the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent differences (RPDs) between the MS and MSD must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery Recove	
A6-1 (0-6")	1,2,3,4,6,7,8-HpCDF	> UL	< LL but > 10%

AC = Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
> the upper control limit (OL)	Detect	J
the lower central limit (LL) but > 100/	Non-detect	J
< the lower control limit (LL) but > 10%	Detect	J
. 100/	Non-detect	R
< 10%	Detect	J

The MS/MSD exhibited acceptable RPDs between the MS and MSD.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent and the field duplicate samples. In the case where the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in mg/kg) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,4,6,7,8-HpCDD	0.0000916	0.0000975	6.2%
	1,2,3,4,6,7,8-HpCDF	0.00000565	0.00000748	27.8%
	1,2,3,4,7,8-HxCDD	0.00000179 J	0.0000012 U	AC
	1,2,3,6,7,8-HxCDD	0.00000266 J	0.00000261 U	AC
	1,2,3,7,8,9-HxCDD	0.00000258 J	0.00000254 J	1.5%
	1,2,3,7,8-PeCDD	0.000000786 J	0.000000701 J	11.4%
	2,3,4,6,7,8-HxCDF	0.00000054 J	0.000000621 J	13.9%
	2,3,4,7,8-PeCDF	0.00000102 J	0.000000761 J	29.0%
	OCDD	0.00284	0.00324	13.1%
40.5 (0.0%) (OCDF	0.0000207	0.0000259	22.3%
A6-5 (0-6") / Field Duplicate #5	Total HpCDD	0.000221	0.000226	2.2%
Ticia Bapiloate iio	Total HpCDF	0.0000223	0.0000259	14.9%
	Total HxCDD	0.0000332	0.0000267	21.7%
	Total HxCDF	0.00000805	0.00000798	0.8%
	Total PeCDD	0.00000781	0.00000212	114.6%
	Total PeCDF	0.00000719	0.00000313	78.6%
	Total TCDD	0.000000729	0.000000506 U	AC
	Total TCDF	0.00000196	0.000000775	86.6%
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.00000368	0.00000327	11.7%
	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.00000395	0.00000376	4.9%
	1,2,3,4,6,7,8-HpCDD	0.000474	0.000431	9.5%
	1,2,3,4,6,7,8-HpCDF	0.0000824	0.0000751	9.2%
A 4 0 (0 C") /	1,2,3,4,7,8,9-HpCDF	0.00000579	0.00000603	4.0%
A4-8 (0-6") / Field Duplicate #6	1,2,3,4,7,8-HxCDD	0.00000766	0.00000705	8.2%
- 10.0 2 ap. 100.0 110	1,2,3,4,7,8-HxCDF	0.00000521	0.00000428 J	19.5%
	1,2,3,6,7,8-HxCDD	0.000016	0.0000137	15.4%
	1,2,3,6,7,8-HxCDF	0.00000348 J	0.00000311 J	11.2%

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,7,8,9-HxCDD	0.0000131	0.0000114	13.8%
	1,2,3,7,8,9-HxCDF	0.00000137 J	0.00000126 J	8.3%
	1,2,3,7,8-PeCDD	0.00000348 J	0.00000341 J	2.0%
	1,2,3,7,8-PeCDF	0.000000528 J	0.000000691 J	26.7%
	2,3,4,6,7,8-HxCDF	0.00000604	0.00000498	19.2%
A4-8 (0-6") /	2,3,4,7,8-PeCDF	0.00000598	0.00000519	14.1%
Field Duplicate #6	2,3,7,8-TCDD	0.000000716 J	0.000000635 J	11.9%
(continued)	2,3,7,8-TCDF	0.00000082 J	0.000000873 J	6.2%
	OCDD	0.00869 E	0.00857 E	1.3%
	OCDF	0.00028	0.000246	12.9%
	Total HpCDD	0.00103	0.000965	6.5%
	Total HpCDF	0.00029	0.000264	9.3%
	Total HxCDD	0.000154	0.000149	3.3%
	Total HxCDF	0.000115	0.000104	10.0%
	Total PeCDD	0.00003	0.0000252	17.3%
	Total PeCDF	0.0000549	0.0000514	6.5%
	Total TCDD	0.00000524	0.00000594	12.5%
	Total TCDF	0.000022	0.0000152	36.5%
	WHO TEQ (Human/ Mammal-NDs Excluded)	0.0000197	0.0000181	8.4%
	WHO TEQ (Human/ Mammal-NDs = 1/2 DL)	0.0000197	0.0000181	8.4%

AC Acceptable

The Total PeCDD associated with samples locations A6-5 (0-6") and Field Duplicate #5 exhibited a RPD greater than the control limit. The Total PeCDD results for sample locations A6-5 (0-6") and Field Duplicate #5 were qualified as estimated ("J").

10. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise ratios, and retention times relative to the internal standards'.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in mg/kg) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
A6-3 (0-6")	1,2,3,4,7,8,9-HpCDF	0.00000249 EMPC	0.00000249 UX
	1,2,3,4,7,8-HxCDD	0.00000120 EMPC	0.00000120 UX
Field Duplicate #5	1,2,3,6,7,8-HxCDD	0.00000261 EMPC	0.00000261 UX
	Total TCDD	0.000000506 EMPC	0.000000506 UX
	OCDF	0.00000142 EMPC	0.00000142 UX
A4-10 (0-6")	Total TCDD	0.000000336 EMPC	0.000000336 UX
A4-10 (0-6)	Total TCDF	0.000000390 EMPC	0.000000390 UX
	Total HpCDF	0.00000103 EMPC	0.00000103 UX
A C C (O C")	2,3,7,8-TCDF	0.000000299 EMPC	0.000000299 UX
A6-6 (0-6")	1,2,3,6,7,8-HxCDF	0.00000114 EMPC	0.00000114 UX
A6-7 (0-6")	1,2,3,6,7,8-HxCDF	0.000000701 EMPC	0.000000701 UX
A6 9 (0 6")	2,3,7,8-TCDD	0.000000196 EMPC	0.000000196 UX
A6-8 (0-6")	1,2,3,7,8-PeCDD	0.000000750 EMPC	0.000000750 UX
A4-5 (0-6")	2,3,7,8-TCDD	0.000000541 EMPC	0.000000541 UX
	2,3,7,8-TCDD	0.000000457 EMPC	0.000000457 UX
A4-2 (0-6")	1,2,3,7,8-PeCDD	0.00000144 EMPC	0.00000144 UX
	2,3,7,8-TCDF	0.000000624 EMPC	0.000000624 UX
	1,2,3,7,8-PeCDD	0.000000645 EMPC	0.000000645 UX
A4-3 (0-6")	2,3,4,7,8-PeCDF	0.00000101 EMPC	0.00000101 UX
	1,2,3,6,7,8-HxCDF	0.000000540 EMPC	0.000000540 UX
A6-4 (0-6")	2,3,7,8-TCDD	0.000000460 EMPC	0.000000460 UX
A4-9 (0-6")	1,2,3,4,7,8-HxCDD	0.00000145 EMPC	0.00000145 UX

The following results exhibited evidence of interference by chlorodiphenyl ethers. The results were flagged "P" by the laboratory indicating the result is the maximum concentrations of the analytes in the case that all of the quantified area is due to the target analyte and none due to the interference. Therefore, these results have been qualified as estimated ("J").

Sample ID	Compound
A6-1 (0-6"), A6-2 (0-6"), A6-7 (0-6")	Total TCDF Total PeCDF
A4-5 (0-6"), A6-4 (0-6")	Total PeCDF
A4-6 (0-6")	Total TCDF Total PeCDF Total HxCDF
A4-4 (0-6")	Total PeCDF Total HxCDF

Sample results that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table (mg/kg).

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
A6-1 (0-6")	OCDD	0.0260 E	_	0.0260 EJ
A6-2 (0-6")	OCDD	0.0152 E	_	0.0152 EJ
A6-3 (0-6")	OCDD	0.0128 E	_	0.0128 EJ
A6-6 (0-6")	OCDD	0.0115 E	_	0.0115 EJ
A4-6 (0-6")	OCDD	0.0211 E	_	0.0211 EJ
A4-4 (0-6")	OCDD	0.0159 E	_	0.0159 EJ
A4-1 (0-6")	OCDD	0.0106 E	_	0.0106 EJ
A4-2 (0-6")	OCDD	0.0121 E		0.0121 EJ
A4-3 (0-6")	OCDD	0.00921 E	_	0.00921 EJ
A6-4 (0-6")	OCDD	0.0104 E	_	0.0104 EJ
A4-8 (0-6")	OCDD	0.00869 E	_	0.00869 EJ
Field Duplicate #6	OCDD	0.00857 E	_	0.00857 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

PCDDs/PCDFs - DATA VALIDATION CHECKLIST

PCDDs/PCDFs; SW-846 8290	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation		•			
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio ≥ 10:1		Х		Х	
Internal standard performance		Х		Х	
Recovery standard performance		Х		Х	
Resolution mix ≤ 25%		Х		Х	
Compound identification and quantitation		•	•	-	•
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions RSD – relative standard deviation		Х		Х	

RSD – relative standard deviation %R - percent recovery RPD - relative percent difference

[%]D – difference

VALIDATION PERFORMED BY: Dennis Dyke

SIGNATURE:

DATE: May 11, 2010

PEER REVIEW: Dennis Capria

DATE: May 17, 2010

Attachment 4

Validated Laboratory Data Sheets

Sample ID: A1-35 (0-6")						:	EPA I	Method 8290
Client Data		Sample Data		Laboratory Data				
Name: Arcadis		Matrix:	Soil	Lab Sample:	32550-003	Date Re	ceived:	2-Apr-10
Project: Beazer-Carbondale, IL Date Collected: 30-Mar-10		Sample Size:	7.35 g	QC Batch No.:	2951	Date Ex	tracted:	16-Apr-10
Time Collected: 0900		%Solids:	68.0	Date Analyzed DB-5:	17-Apr-10	Date An	alyzed DB-225:	NA
Analyte Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stan	dard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD ND	0.607			IS 13C-2,3,7,8-T0	CDD	82.0	40 - 135	
1,2,3,7,8-PeCDD ND		1.46	υX	13C-1,2,3,7,8-1	PeCDD	70.3	40 - 135	
1,2,3,4,7,8-HxCDD 5.18				13C-1,2,3,4,7,8	R-HxCDD	82.6	40 - 135	
1,2,3,6,7,8-HxCDD 11.3				13C-1,2,3,6,7,8	R-HxCDD	82.0	40 - 135	
1,2,3,7,8,9-HxCDD 8.34				13C-1,2,3,7,8,9	9-HxCDD	90.7	40 - 135	
1,2,3,4,6,7,8-HpCDD 375				13C-1,2,3,4,6,7	7,8-HpCDD	76.2	40 - 135	
OCDD 12500			E 5	13C-OCDD		86.6	40 - 135	
2,3,7,8-TCDF ND		0.831	υX	13C-2,3,7,8-T0	CDF	77.9	40 - 135	
1,2,3,7,8-PeCDF ND		0.705	UX	13C-1,2,3,7,8-	PeCDF	68.5	40 - 135	
2,3,4,7,8-PeCDF 1.69			J	13C-2,3,4,7,8-1		73.5	40 - 135	
1,2,3,4,7,8-HxCDF 2.57			J	13C-1,2,3,4,7,8		81.2	40 - 135	
1,2,3,6,7,8-HxCDF 1.18			J	13C-1,2,3,6,7,8		86.3	40 - 135	
2,3,4,6,7,8-HxCDF ND		1.68	υX	13C-2,3,4,6,7,8		76.8	40 - 135	
1,2,3,7,8,9-HxCDF ND	1.49			13C-1,2,3,7,8,9		78.4	40 - 135	
1,2,3,4,6,7,8-HpCDF 42.3			u sylv [*]	13C-1,2,3,4,6,7		77.6	40 - 135	
1,2,3,4,7,8,9-HpCDF 1.98			J	13C-1,2,3,4,7,8	*	68.2	40 - 135	
OCDF 167				13C-OCDF		64.9	40 - 135	
				CRS 37Cl-2,3,7,8-T	CDD	81.3	40 - 135	
Totals				Toxic Equivalent (
Total TCDD 10.3				TEQ (Min):	11.4			
Total PeCDD 20.8		23.6						
Total HxCDD 124				a. Sample specific estima	ted detection limit.			
Total HpCDD 843				b. Estimated maximum po				
Total TCDF 3.10		6.30		c. Method detection limit				
Total PeCDF 11.9		16.6		d. Lower control limit - u				
Total HxCDF 49.1		56.7		e. TEQ based on (2005) V		on Toxic F	uivalent Factors (WHO)
Total HpCDF 163		20.7		The results are reported in				

Approved By:

Sample ID: A1-36 (0-	6")					i en	EPA N	Aethod 8290
Client Data		Sample Data		Laboratory Data				
Name: ARCAI		Matrix:	Soil	Lab Sample:	32549-018	Date Re	ceived:	2-Apr-10
1 "	-Carbondale, IL	Sample Size:	7.25 g	QC Batch No.:	2967	Date Ex	tracted:	21-Apr-10
Date Collected: 30-Mar- Time Collected: 0845	- 10	%Solids:	70.3	Date Analyzed DB-5:	25-Apr-10	Date An	alyzed DB-225:	NA
Analyte Co	onc. (pg/g) DL ^a	EMPC ^b	Qualifiers	Labeled Standa	ırd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 0	0.593		J	<u>IS</u> 13C-2,3,7,8-TCD)D	95.6	40 - 135	
1,2,3,7,8-PeCDD N	ND	0.697 U	,X	13C-1,2,3,7,8-Pe	CDD	94.2	40 - 135	
1,2,3,4,7,8-HxCDD 1	1.88		J	13C-1,2,3,4,7,8-I	HxCDD	98.4	40 - 135	
1,2,3,6,7,8-HxCDD 1	10.7			13C-1,2,3,6,7,8 - F	HxCDD	99.9	40 - 135	
1,2,3,7,8,9-HxCDD 3	3.79		J	13C-1,2,3,7,8,9-I	HxCDD	95.5	40 - 135	
1,2,3,4,6,7,8-HpCDD 3	341			13C-1,2,3,4,6,7,8	-HpCDD	82.2	40 - 135	
	8830		EJ	13C-OCDD	ruktati in	83.1	40 - 135	
2,3,7,8-TCDF	ND 0.367			13C-2,3,7,8-TCD	F	92.0	40 - 135	
1,2,3,7,8-PeCDF	ND 0.948			13C-1,2,3,7,8-Pe	CDF	95.6	40 - 135	
2,3,4,7,8-PeCDF	ND 0.844			13C-2,3,4,7,8-Pe	CDF	100	40 - 135	
1,2,3,4,7,8-HxCDF 2	2.43		J	13C-1,2,3,4,7,8-I	IxCDF	91.1	40 - 135	
1,2,3,6,7,8-HxCDF N	ND	0.971 U	X	13C-1,2,3,6,7,8-I	HxCDF	93.5	40 - 135	
2,3,4,6,7,8-HxCDF	1.91		Ј	13C-2,3,4,6,7,8-I	AxCDF	92.8	40 - 135	
1,2,3,7,8,9 - HxCDF	ND 0.870			13C-1,2,3,7,8,9-I	HxCDF	87.8	40 - 135	
1,2,3,4,6,7,8-HpCDF 7	79.8			13C-1,2,3,4,6,7,8	-HpCDF	80.3	40 - 135	
1,2,3,4,7,8,9-HpCDF 6	6.44			13C-1,2,3,4,7,8,9	-HpCDF	74.3	40 - 135	
OCDF 5	560			13C-OCDF		67.3	40 - 135	
				CRS 37Cl-2,3,7,8-TCl	OD	87.6	40 - 135	
Totals				Toxic Equivalent Qu	otient (TEQ) Da	nta e		
Total TCDD 2	2,67	3.32		TEQ (Min): 9.	75			
Total PeCDD 1	10.7	13.3						
Total HxCDD 6	65.4	66.8		a. Sample specific estimated	detection limit.			
Total HpCDD 6	659			b. Estimated maximum poss	ible concentration.			
Total TCDF	0.760			c. Method detection limit.				
Total PeCDF 4	4.00			d. Lower control limit - upp	er control limit.			
Total HxCDF 8	82.1	83.0		e. TEQ based on (2005) Wo	rld Health Organizati	on Toxic E	quivalent Factors.((WHO)
Total HpCDF 4	466			The results are reported in d	ry weight. The sample	e size is rep	orted in wet weigh	ht.

Approved By:

Sample ID: A1-37	(0-6")						Tarana.	EPA N	Method 8290
Project: Bea	CADIS azer-Carbondale, IL Mar-10 0		Sample Data Matrix: Sample Size: %Solids:	Soil 3.32 g 60.9	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32549-016 2975 25-Apr-10	Date Re Date Ex Date An		2-Apr-10 23-Apr-10 NA
Analyte	alyte Conc. (pg/g) DL ^a EMPC ^b Qualifiers		Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers	
2,3,7,8-TCDD	ND		2.12	UΧ	<u>IS</u> 13C-2,3,7,8-TCD	D ·	94.5	40 - 135	
1,2,3,7,8-PeCDD	12.7			J	13C-1,2,3,7,8-PeC	CDD	86.5	40 - 135	
1,2,3,4,7,8-HxCDD	47.1			J	13C-1,2,3,4,7,8-H	xCDD	91.3	40 - 135	
1,2,3,6,7,8-HxCDD	351				13C-1,2,3,6,7,8-H	xCDD	95.1	40 - 135	
1,2,3,7,8,9-HxCDD	66.9				13C-1,2,3,7,8,9-H	xCDD	88.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	10600				13C-1,2,3,4,6,7,8-	HpCDD	76.6	40 - 135	
OCDD	86000				13C-OCDD		76.8	40 - 135	
2,3,7,8-TCDF	ND	2.52			13C-2,3,7,8-TCD	7	89.5	40 - 135	
1,2,3,7,8-PeCDF	ND	5.44			13C-1,2,3,7,8-PeC		83.6	40 - 135	
2,3,4,7,8-PeCDF	ND		6.11	UΧ	13C-2,3,4,7,8-PeC		84.6	40 - 135	
1,2,3,4,7,8-HxCDF	93.3				13C-1,2,3,4,7,8-H	the state of the state of the state of the	90.4	40 - 135	
1,2,3,6,7,8-HxCDF	39.4			J	13C-1,2,3,6,7,8-H		91.9	40 - 135	
2,3,4,6,7,8-HxCDF	96.9				13C-2,3,4,6,7,8-H		88.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND	15.2			13C-1,2,3,7,8,9-H		82.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	3290				13C-1,2,3,4,6,7,8-		71.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	347				13C-1,2,3,4,7,8,9-	•	72.8	40 - 135	
OCDF	27200				13C-OCDF		70.1	40 - 135	
					CRS 37CI-2,3,7,8-TCD	D	84.8	40 - 135	
Totals					Toxic Equivalent Quo			******	
Total TCDD	33.9		36.1		TEQ (Min): 258				
Total PeCDD	50.6		74.1						
Total HxCDD	2040				a. Sample specific estimated of	letection limit.			
Total HpCDD	20500				b. Estimated maximum possit				
Total TCDF	23.6		31.0		c. Method detection limit.				
Total PeCDF	178		187		d. Lower control limit - upper	control limit.			
Total HxCDF	4970				e. TEQ based on (2005) Worl		on Toxic E	uivalent Factors (WHO)
Total HpCDF	29500				The results are reported in dry				

Approved By:

Sample ID: FIELD	DUPLICATE #3	THE COLUMN TWO IS NOT				EPA N	Method 8290
Client Data Name: ARCA	ADIS	Sample Data		Laboratory Data			
	er-Carbondale, IL	Matrix:	Soil	Lab Sample: 32549-017	Date Re		2-Apr-10
Date Collected: 30-Ma		Sample Size:	7.98 g	QC Batch No.: 2967	Date Ex		21-Apr-10
Time Collected: NA		%Solids:	62.6	Date Analyzed DB-5: 25-Apr-10	Dates A	nalyzed DB-225:	26-Apr-10
	Conc. (pg/g) DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	1,91			<u>IS</u> 13C-2,3,7,8-TCDD	92.4	40 - 135	
1,2,3,7,8-PeCDD	16.5			13C-1,2,3,7,8-PeCDD	89.6	40 - 135	
1,2,3,4,7,8-HxCDD	66.8			13C-1,2,3,4,7,8-HxCDD	102	40 - 135	
1,2,3,6,7,8-HxCDD	542			13C-1,2,3,6,7,8-HxCDD	102	40 - 135	
1,2,3,7,8,9-HxCDD	114			13C-1,2,3,7,8,9-HxCDD	104	40 - 135	
1,2,3,4,6,7,8-HpCDD	15400		EJ	13C-1,2,3,4,6,7,8-HpCDD	116	40 - 135	
OCDD	146000		*, E. T	13C-OCDD	89.5	40 - 135	*
2,3,7,8-TCDF	1.44			13C-2,3,7,8-TCDF	87.7	40 - 135	
1,2,3,7,8-PeCDF	2.87		J	13C-1,2,3,7,8-PeCDF	107	40 - 135	
2,3,4,7,8-PeCDF	10.1			13C-2,3,4,7,8-PeCDF	101	40 - 135	
1,2,3,4,7,8-HxCDF	137			13C-1,2,3,4,7,8-HxCDF	86.9	40 - 135	
1,2,3,6,7,8-HxCDF	36.4			13C-1,2,3,6,7,8-HxCDF	94.1	40 - 135	
2,3,4,6,7,8-HxCDF	128			13C-2,3,4,6,7,8-HxCDF	87.4	40 - 135	
1,2,3,7,8,9-HxCDF	23.1			13C-1,2,3,7,8,9-HxCDF	86.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	5400		EJ	13C-1,2,3,4,6,7,8-HpCDF	89.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	558			13C-1,2,3,4,7,8,9-HpCDF	83.4	40 - 135	
OCDF	41300		EJ	13C-OCDF	117	40 - 135	
			_	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.8	40 - 135	
Totals	100 March			Toxic Equivalent Quotient (TEQ) Da			
Total TCDD	59.8	60.2		TEQ (Min): 396			
Total PeCDD	123						
Total HxCDD	2870			a. Sample specific estimated detection limit.			
Total HpCDD	27100		五	b. Estimated maximum possible concentration.			
Total TCDF	67.5	69.9		c. Method detection limit.			
Total PeCDF	172		P J	d. Lower control limit - upper control limit.			
Total HxCDF	7890		PJ	e. TEQ based on (2005) World Health Organization	on Toxic F	guivalent Factors (WHO)
Total HpCDF	52200		· 5	The results are reported in dry weight. The sample			

Approved By:

Sample ID: A1-38	(0-6'')							EPA N	Method 829
Client Data			Sample Data		Laboratory Data				
	CADIS		Matrix:	Soil	Lab Sample:	32549-019	Date Re	ceived:	2-Apr-10
	er-Carbondale, IL Iar-10		Sample Size:	8.19 g	QC Batch No.:	2967	Date Ex	tracted;	21-Apr-10
Time Collected: 0850			%Solids:	61.6	Date Analyzed DB-5:	25-Apr-10	Date Ar	alyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.672			J	<u>IS</u> 13C-2,3,7,8-TCD	D	92.6	40 - 135	
1,2,3,7,8-PeCDD	1.35			J	13C-1,2,3,7,8-PeC	CDD	88.6	40 - 135	
1,2,3,4,7,8-HxCDD	2.32			J	13C-1,2,3,4,7,8-H		93.2	40 - 135	
1,2,3,6,7,8-HxCDD	5.94				13C-1,2,3,6,7,8-H		98.9	40 - 135	
1,2,3,7,8,9-HxCDD	3.57			J	13C-1,2,3,7,8,9-H	xCDD	95.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	225				13C-1,2,3,4,6,7,8-	HpCDD	82.9	40 - 135	
OCDD	5450				13C-OCDD	ulia.	85.6	40 - 135	
2,3,7,8-TCDF	ND	0.332			13C-2,3,7,8-TCD	F	94.9	40 - 135	
1,2,3,7,8-PeCDF	ND	0.660			13C-1,2,3,7,8-PeC	CDF	93.9	40 - 135	
2,3,4,7,8-PeCDF	1.20			J	13C-2,3,4,7,8-PeC		97.4	40 - 135	
1,2,3,4,7,8-HxCDF	1.97			J	13C-1,2,3,4,7,8-H	xCDF	88.3	40 - 135	
1,2,3,6,7,8-HxCDF	0.606			J	13C-1,2,3,6,7,8-H		91.6	40 - 135	
2,3,4,6,7,8-HxCDF	1.30			J	13C-2,3,4,6,7,8-H		87.4	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.757			13С-1,2,3,7,8,9-Н		85.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	23.1				13C-1,2,3,4,6,7,8-	HpCDF	74.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	2.01			J	13C-1,2,3,4,7,8,9-	•	77.2	40 - 135	
OCDF	111				13C-OCDF		75.5	40 - 135	
					CRS 37Cl-2,3,7,8-TCD	D	87.1	40 - 135	
Totals					Toxic Equivalent Quo		a e		VP1-11
Total TCDD	7.88		10.1	:	TEQ (Min): 8.1	3			
Total PeCDD	14.4		25.6		(1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4				
Total HxCDD	115				a. Sample specific estimated of	detection limit			
Total HpCDD	514				b. Estimated maximum possib				
Total TCDF	3.80		4.04		c. Method detection limit.				
Total PeCDF	6.03		6.51		d. Lower control limit - upper	control limit			
Total HxCDF	36.0				e. TEQ based on (2005) Worl		Toxic F	mivalent Factors (WHO)
Total HpCDF	122				The results are reported in dry				

Approved By:

Sample ID: A1-39 (0-6")				EPA N	Tethod 8290
Client Data Name: ARCADIS Project: Beazer-Carbondale, IL Date Collected: 30-Mar-10 Time Collected: 0855	Sample Data Matrix: Sample Size: %Solids:	Soil 8.36 g 60.9	QC Batch No.: 2967 D	rate Received: rate Extracted: rate Analyzed DB-225:	2-Apr-10 21-Apr-10 NA
Analyte Conc. (pg/g) DL a	EMPC ^b	Qualifiers	Labeled Standard %	6R LCL-UCLd	Qualifiers
2,3,7,8-TCDD ND	1.34	ЯX	<u>IS</u> 13C-2,3,7,8-TCDD	93.2 40 - 135	
1,2,3,7,8-PeCDD 12.8			13C-1,2,3,7,8-PeCDD	87.2 40 - 135	
1,2,3,4,7,8-HxCDD 32.6			13C-1,2,3,4,7,8-HxCDD	87.2 40 - 135	
1,2,3,6,7,8-HxCDD 74.9			13C-1,2,3,6,7,8-HxCDD	90.0 40 - 135	
1,2,3,7,8,9-HxCDD 51.9			13C-1,2,3,7,8,9-HxCDD	93.0 40 - 135	
1,2,3,4,6,7,8-HpCDD 2510			13C-1,2,3,4,6,7,8-HpCDD	86.0 40 - 135	
OCDD 30800		EJ	13C-OCDD	81.1 40 - 135	
2,3,7,8-TCDF 0.646		J	13C-2,3,7,8-TCDF	92.4 40 - 135	
1,2,3,7,8-PeCDF 1.16		y :		92.4 40 - 135	
2,3,4,7,8-PeCDF 4.50		J		93.1 40 - 135	
1,2,3,4,7,8-HxCDF 16.2				87.1 40 - 135	
1,2,3,6,7,8-HxCDF 7.29				8 2.7 40 - 135	
2,3,4,6,7,8-HxCDF 12.7				88.7 40 - 135	
1,2,3,7,8,9-HxCDF 3.24		Į.		88.2 40 - 135	
1,2,3,4,6,7,8-HpCDF 402		· ·		76.5 40 - 135	
1,2,3,4,7,8,9-HpCDF 28.5			, ⁼	72.2 40 - 135	
OCDF 1960			garanti di salah sal	68.4 40 - 135	
				86.1 40 - 135	
Totals			Toxic Equivalent Quotient (TEQ) Data	е	
Total TCDD 11.4	18.0		TEQ (Min): 73.4	ing a control of	
Total PeCDD 64.8					
Total HxCDD 468			a. Sample specific estimated detection limit.		
Total HpCDD 4380			b. Estimated maximum possible concentration.		
Total TCDF 11.8	14.0		c. Method detection limit.		
Total PeCDF 40.7	41.2		d. Lower control limit - upper control limit.		
Total HxCDF 361			e. TEQ based on (2005) World Health Organization To	oxic Equivalent Factors (WHO)
Total HpCDF 1780			The results are reported in dry weight. The sample size	. •	

Approved By:

Sample ID: A1-40 (0-6")		ريسي موسي			EPA N	Aethod 8290
Client Data Name: Arcad Project: Beaze Date Collected: 30-Ma Time Collected: 0905	r-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Soil 9.17 g 54.5	Laboratory Data Lab Sample: 32550-004 QC Batch No.: 2951 Date Analyzed DB-5: 17-Apr-10	Date Received: Date Extracted: Date Analyzed DB-225:	2-Apr-10 16-Apr-10 NA
Analyte C	onc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R LCL-UCL ^d	Qualifiers
1,2,3,7,8-PeCDD	8.05 ND	4.40	2.90	υ×	<u>IS</u> 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	81.3 40 - 135 65.5 40 - 135	
1,2,3,6,7,8-HxCDD	ND 5.09 ND	4.42 4.75			13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	78.1 40 - 135 83.8 40 - 135 78.7 40 - 135	
1,2,3,4,6,7,8-HpCDD	207 6430	.,,,			13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	67.8 40 - 135 71.2 40 - 135	
1,2,3,7,8-PeCDF	ND ND	0.547	0.478	υ×	13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	74.6 40 - 135 65.9 40 - 135	
, , , , , , , ,	0.633 ND ND	1.97 1.77		J	13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	65.8 40 - 135 79.0 40 - 135 90.1 40 - 135	
2,3,4,6,7,8-HxCDF	ND ND	1.88 1.38			13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	75.3 40 - 135 74.3 40 - 135	
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	31.8 2.06			J	13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	65.9 40 - 135 63.6 40 - 135	
OCDF	168			****	13C-OCDF <u>CRS</u> 37Cl-2,3,7,8-TCDD	60.5 40 - 135 87.0 40 - 135	
Totals					Toxic Equivalent Quotient (TEQ) D	ata e	
Total TCDD Total PeCDD	22.0 64.9	:	22.4 67.8	≸ *	TEQ (Min): 13.1		
Total HxCDD Total HpCDD	117 521		c =0		a. Sample specific estimated detection limit.b. Estimated maximum possible concentration.		
Total PeCDF	3.98 5.69 30.1		6.73 8.94 32.1		c. Method detection limit. d. Lower control limit - upper control limit.		Maro
	149		32.1		e. TEQ based on (2005) World Health Organizat The results are reported in dry weight. The samp		,

Approved By:

Sample ID: A1-41	(0-6'')							EPA N	Method 8290
Client Data			Sample Data	- Minne	Laboratory Data		<u> </u>		
Name: Arca			Matrix:	Soil	Lab Sample:	32550-005	Date Re	ceived:	2-Apr-10
1 .	er-Carbondale, IL Iar-10		Sample Size:	6.71 g	QC Batch No.:	2951	Date Ex	tracted:	16-Apr-10
Time Collected: 0910			%Solids:	78.0	Date Analyzed DB-5:	17-Apr-10	Date An	alyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.742			J	<u>IS</u> 13C-2,3,7,8-TCD	D·····································	86.2	40 - 135	, v
1,2,3,7,8-PeCDD	13.3				13C-1,2,3,7,8-Pe(CDD	74.3	40 - 135	
1,2,3,4,7,8-HxCDD	34.7				13C-1,2,3,4,7,8-H	IxCDD	92.4	40 - 135	
1,2,3,6,7,8-HxCDD	31.3				13C-1,2,3,6,7,8-H	IxCDD	95.2	40 - 135	
1,2,3,7,8,9 - HxCDD	73.0				13C-1,2,3,7,8,9-Н	(xCDD	90.7	40 - 135	
1,2,3,4,6,7,8 - HpCDD	2140				13C-1,2,3,4,6,7,8-	-HpCDD	87.0	40 - 135	
OCDD	28300			EJ	13C-OCDD		118	40 - 135	
2,3,7,8-TCDF	ND	0.798			13C-2,3,7,8-TCD	F	82.6	40 - 135	
1,2,3,7,8-PeCDF	ND		1.08	υX	13C-1,2,3,7,8-PeC	CDF	73.5	40 - 135	
2,3,4,7,8-PeCDF	4.35			J	13C-2,3,4,7,8-PeC	CDF	79.5	40 - 135	
1,2,3,4,7,8-HxCDF	13.8				13C-1,2,3,4,7,8-H	xCDF	90.0	40 - 135	
1,2,3,6,7,8-HxCDF	17.1				13C-1,2,3,6,7,8-H	xCDF	96.1	40 - 135	
2,3,4,6,7,8-HxCDF	27.0				13C-2,3,4,6,7,8-H	xCDF	83.0	40 - 135	
1,2,3,7,8,9-HxCDF	2.26			J	13C-1,2,3,7,8,9-H	xCDF	81.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	546				13C-1,2,3,4,6,7,8-	HpCDF	76.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	22.5				13C-1,2,3,4,7,8,9-	HpCDF	73.5	40 - 135	
OCDF	1140				13C-OCDF		73.8	40 - 135	
	170.4.1				CRS 37Cl-2,3,7,8-TCD	D	86.2	40 - 135	
Totals					Toxic Equivalent Quo	otient (TEQ) Da	ata e		
Total TCDD	0.742		3.08		TEQ (Min): 71	.2	11.		
Total PeCDD	61.4		62.3						
Total HxCDD	563				a. Sample specific estimated	detection limit.			
Total HpCDD	3970				b. Estimated maximum possil	ole concentration.			
Total TCDF	12.0			:	c. Method detection limit.				
Total PeCDF	92.6		95.9		d. Lower control limit - upper	control limit.			
Total HxCDF	521				e. TEQ based on (2005) Worl		on Toxic Ed	quivalent Factors (WHO)
Total HpCDF	1500				The results are reported in dry				

Approved By:

Sample ID: A1-42	(0-6'')						EPA I	Method 829
	dis er-Carbondale, IL Jar-10		Sample Data Matrix: Sample Size: %Solids:	Soil * 7.04 g 71.4	Laboratory Data Lab Sample: 32550-006 QC Batch No.: 2951 Date Analyzed DB-5: 17-Apr-10	Date Re Date Ex Date Ar		2-Apr-10 16-Apr-10 NA
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND 4.18 3.48 160 9280 ND ND ND ND ND 1.20 ND	0.622 0.840 1.03	0.316 0.882 1.89	J J J J J J J J	IS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	87.4 74.8 89.0 87.4 89.9 70.5 79.0 84.2 77.0 86.2 92.3 99.3 83.9	40 - 135 40 - 135	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND 16.0 ND 58.8	0.783	0.888	υχ	13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF CRS 37Cl-2,3,7,8-TCDD	85.2 71.3 68.5 61.2 87.3	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	
Totals					Toxic Equivalent Quotient (TEQ) Da	ata e		
Total TCDD Total PeCDD Total HxCDD Total HxCDD	2.70 6.57 46.8		3.01 8.26 48.7		TEQ (Min): 5.56 a. Sample specific estimated detection limit.			
Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	378 3.22 4.20 16.3 56.3		5.23 17.6 57.2		 b. Estimated maximum possible concentration. c. Method detection limit. d. Lower control limit - upper control limit. e. TEQ based on (2005) World Health Organization. The results are reported in dry weight. The sample 			

Approved By:

Client Data			Sample Data		Τ,	D 4	<u></u>		·	Method 8290
Name: Arca	dis			G 11		oratory Data				
	zer-Carbondale, IL		Matrix:	Sediment	1	Sample:	32550-007	Date Re		2-Apr-10
	1ar-10		Sample Size:	7.78 g	1 '	Batch No.:	2951	Date Ex		16-Apr-10
0720			%Solids:	65.4	Date	Analyzed DB-5:	17-Apr-10	Date An	alyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ırd	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	ND		0.334	UΧ	<u>IS</u>	13C-2,3,7,8-TCD	D	81.7	40 - 135	
1,2,3,7,8-PeCDD	ND	0.664				13C-1,2,3,7,8-Pe0	CDD	67.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.89				13C-1,2,3,4,7,8-F	IxCDD	79.9	40 - 135	
1,2,3,6,7,8-HxCDD	ND	2.55				13C-1,2,3,6,7,8-H	łxCDD	78.4	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.89				13C-1,2,3,7,8,9-H	łxCDD	76.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	79.1					13C-1,2,3,4,6,7,8	-HpCDD	64.0	40 - 135	
OCDD	4000					13C-OCDD		65.3	40 - 135	
2,3,7,8-TCDF	ND	0.490				13C-2,3,7,8-TCD	F	76.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.637				13C-1,2,3,7,8-Pe0	CDF	68.1	40 - 135	
2,3,4,7,8-PeCDF	ND	0.619				13C-2,3,4,7,8-Pe0	CDF	70.6	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.800				13C-1,2,3,4,7,8-H	IxCDF	87.5	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.404				13C-1,2,3,6,7,8-H	łxCDF	90.1	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.498			ŀ	13C-2,3,4,6,7,8-H	IxCDF	76.4	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.685				13C-1,2,3,7,8,9-H	lxCDF	71.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	5.72					13C-1,2,3,4,6,7,8-	-HpCDF	61.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.887				13C-1,2,3,4,7,8,9-	-HpCDF	58.2	40 - 135	
OCDF	21.7					13C-OCDF		57.2	40 - 135	
					<u>CRS</u>	37Cl-2,3,7,8-TCD	DD	79.6	40 - 135	
Totals					Toxi	ic Equivalent Quo	otient (TEQ) D	ata e		
Total TCDD	ND		0.334	UΧ	TEQ) (Min): 2.0	05			
Total PeCDD	ND		2.34	ÚX	`	•				
Total HxCDD	23.0			- /	a. Sam	nple specific estimated	detection limit.			
Total HpCDD	238				b. Esti	imated maximum possi	ble concentration.			
Total TCDF	ND	0.490			c. Met	thod detection limit.				
Total PeCDF	ND		0.446	UX	d. Lov	wer control limit - uppe	r control limit.			
Total HxCDF	4.45					Q based on (2005) Wor		ion Toxic E	quivalent Factors.(WHO)
Total HpCDF	22.7				1	esults are reported in dr				

Approved By:

Sample ID: A1-44	(0-6'')							EPA I	Method 829
Client Data			Sample Data		Laboratory Data				
Name: Arca Project: Beaz	idis zer-Carbondale, IL		Matrix:	Sediment	Lab Sample:	32550-008	Date Re	eceived:	2-Apr-10
	Mar-10		Sample Size:	7.84 g	QC Batch No.:	2951	Date Ex	tracted:	16-Apr-10
Time Collected: 0925			%Solids:	64.1	Date Analyzed DB-5:	18-Apr-10	Date Ar	nalyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Sta	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.490			<u>IS</u> 13C-2,3,7,8-7	CDD	85.5	40 - 135	
1,2,3,7,8-PeCDD	3.04			J	13C-1,2,3,7,8	-PeCDD	74.6	40 - 135	
1,2,3,4,7,8-HxCDD	6.46				13C-1,2,3,4,7	,8-HxCDD	88.7	40 - 135	
1,2,3,6,7,8-HxCDD	24.2				13C-1,2,3,6,7	,8-HxCDD	85.8	40 - 135	
1,2,3,7,8,9-HxCDD	11.2				13C-1,2,3,7,8	,9-HxCDD	84.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	670				13C-1,2,3,4,6	,7,8-HpCDD	74.6	40 - 135	
OCDD	10300			Eゴ	13C-OCDD		87.3	40 - 135	
2,3,7,8-TCDF	0.589			J	13C-2,3,7,8-T	CDF	83.1	40 - 135	
1,2,3,7,8-PeCDF	2.27			J	13C-1,2,3,7,8	-PeCDF	75.1	40 - 135	
2,3,4,7,8-PeCDF	14.9				13C-2,3,4,7,8		79.7	40 - 135	
1,2,3,4,7,8-HxCDF	28.5				13C-1,2,3,4,7		89.0	40 - 135	
1,2,3,6,7,8-HxCDF	7.22				13C-1,2,3,6,7	,8-HxCDF	98.8	40 - 135	
2,3,4,6,7,8-HxCDF	12.3				13C-2,3,4,6,7		82.5	40 - 135	
1,2,3,7,8,9-HxCDF	7.74				13C-1,2,3,7,8	•	79.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	130				13C-1,2,3,4,6	•	72.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	14.8				13C-1,2,3,4,7	•	67.3	40 - 135	
OCDF	596				13C-OCDF	,-,·	66.8	40 - 135	
					CRS 37Cl-2,3,7,8-	ГCDD	83.9	40 - 135	
Totals						Quotient (TEQ) Da			
Total TCDD	4.79				TEQ (Min):	28.8	. 177 - 5.		
Total PeCDD	30.7		31.7		C (
Total HxCDD	205				a. Sample specific estim	ated detection limit			
Total HpCDD	1680				b. Estimated maximum				
Total TCDF	7.31		10.2		c. Method detection lim				
Total PeCDF	80.6				d. Lower control limit -				
Total HxCDF	255		257			World Health Organization	on Toxic E	mivalent Factors (WHO
Total HpCDF	666					in dry weight. The sample		-	

Approved By:

Sample ID: A1-45 (0-6")						EPA I	Method 829
Client Data Name: Arcadis Project: Beazer-Carbondale, IL Date Collected: 30-Mar-10 Time Collected: 0940		Sample Data Matrix: Sample Size: %Solids:	Soil 7.06 g 71.6	Laboratory Data Lab Sample: 32550-010 QC Batch No.: 2951 Date Analyzed DB-5: 18-Apr-10			2-Apr-10 16-Apr-10 NA
Analyte Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD ND		0.676	υX	<u>IS</u> 13C-2,3,7,8-TCDD	85.0	40 - 135	
1,2,3,7,8-PeCDD ND	0.967			13C-1,2,3,7,8-PeCDD	75.0	40 - 135	
1,2,3,4,7,8-HxCDD ND	1.54			13C-1,2,3,4,7,8-HxCDD	88.2	40 - 135	
1,2,3,6,7,8-HxCDD ND	1.84			13C-1,2,3,6,7,8-HxCDD	86.0	40 - 135	
1,2,3,7,8,9-HxCDD 0.943			J	13C-1,2,3,7,8,9-HxCDD	86.3	40 - 135	
1,2,3,4,6,7,8-HpCDD 55.2				13C-1,2,3,4,6,7,8-HpCDD	73.0	40 - 135	
OCDD 7630				13C-OCDD	84.8	40 - 135	
2,3,7,8-TCDF ND	0.477			13C-2,3,7,8-TCDF	82.7	40 - 135	
1,2,3,7,8-PeCDF ND	0.719			13C-1,2,3,7,8-PeCDF	73.9	40 - 135	
2,3,4,7,8-PeCDF ND	0.676			13C-2,3,4,7,8-PeCDF	76.1	40 - 135	
1,2,3,4,7,8-HxCDF 0.751			J	13C-1,2,3,4,7,8-HxCDF	89.7	40 - 135	
1,2,3,6,7,8-HxCDF ND	0.554			13C-1,2,3,6,7,8-HxCDF	91.2	40 - 135	
2,3,4,6,7,8-HxCDF ND	0.719			13C-2,3,4,6,7,8-HxCDF	81.0	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.892			13C-1,2,3,7,8,9-HxCDF	78.9	40 - 135	
1,2,3,4,6,7,8-HpCDF 5.36				13C-1,2,3,4,6,7,8-HpCDF	72.9	40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.801			13C-1,2,3,4,7,8,9-HpCDF	70.4	40 - 135	
OCDF 20.7				13C-OCDF	67.2	40 - 135	
				<u>CRS</u> 37Cl-2,3,7,8-TCDD	84.9	40 - 135	
Totals			**************************************	Toxic Equivalent Quotient (TEQ) Da			
Total TCDD ND		0.676	Uχ	TEQ (Min): 3.07			
Total PeCDD 2.28		3.13	,				
Total HxCDD 11.8				a. Sample specific estimated detection limit.			
Total HpCDD 123				b. Estimated maximum possible concentration.			
Total TCDF 0.841				c. Method detection limit.			
Total PeCDF 0.762				d. Lower control limit - upper control limit.			
Total HxCDF 0.751		6.47		e. TEQ based on (2005) World Health Organizatio	n Toyic F	miralent Factors /	WHO
Total HpCDF 20.8				The results are reported in dry weight. The sample			

Approved By:

Sample ID: A1-46	(0-6")	Page 1 Annual Control of Control	WAR		1			EPA I	Method 8290
Project: Bea	adis zer-Carbondale, IL Mar-10 5		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.45 g 67.5	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32550-011 2951 18-Apr-10	Date Re Date Ex		2-Apr-10 16-Apr-10 NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.610			<u>IS</u> 13C-2,3,7,8-TCI	DD	77.5	40 - 135	
1,2,3,7,8-PeCDD	ND	0.984			13C-1,2,3,7,8-Pe	eCDD	62.6	40 - 135	
1,2,3,4,7,8-HxCDD	ND	3.96			13C-1,2,3,4,7,8-1	HxCDD	79.0	40 - 135	
1,2,3,6,7,8-HxCDD	ND	3.81			13C-1,2,3,6,7,8-1	HxCDD	81.8	40 - 135	
1,2,3,7,8,9 - HxCDD	ND	4.21			13C-1,2,3,7,8,9-1	HxCDD	76.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	83.6				13C-1,2,3,4,6,7,8	8-HpCDD	63.1	40 - 135	
OCDD	4370				13C-OCDD	. Brown	67.4	40 - 135	
2,3,7,8-TCDF	ND	0.488			13C-2,3,7,8-TCI)F	76.4	40 - 135	
1,2,3,7,8-PeCDF	ND	1.16			13C-1,2,3,7,8-Pe	CDF	58.4	40 - 135	
2,3,4,7,8-PeCDF	1.30			J	13C-2,3,4,7,8-Pe		62.7	40 - 135	
1,2,3,4,7,8-HxCDF	1.75			J	13C-1,2,3,4,7,8-1	HxCDF	79.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.673			13C-1,2,3,6,7,8-1	HxCDF	83.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND ⁻	1.46			13C-2,3,4,6,7,8-1	HxCDF	75.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.02			13C-1,2,3,7,8,9-1		73.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	9.81				13C-1,2,3,4,6,7,8		63.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.28			13C-1,2,3,4,7,8,9	•	61.1	40 - 135	
OCDF	35.6				13C-OCDF		56.7	40 - 135	
					CRS 37Cl-2,3,7,8-TCl	DD	87.5	40 - 135	
Totals					Toxic Equivalent Qu				
Total TCDD	ND	0.792			TEQ (Min): 2.	.82			
Total PeCDD	ND	1.26			-, , , , , , , , , , , , , , , , , , ,	•			
Total HxCDD	18.2				a. Sample specific estimated	d detection limit.			
Total HpCDD	185				b. Estimated maximum poss				
Total TCDF	ND		0.639	υX	c. Method detection limit.	+ 7			
Total PeCDF	1.30		4.71	,	d. Lower control limit - upp	er control limit			
Total HxCDF	13,0		14.0		e. TEQ based on (2005) Wo		n Toxic E	guivalent Factors (WHO)
Total HpCDF	34.6				The results are reported in d				

Approved By:

Sample ID: A1-47 (0-6'')				EPA Method 8	3290
Client Data			Sample Data		Laboratory Data	
Name: Arcad			Matrix:	Sediment	Lab Sample: 32550-009 Date Received: 2-Apr-	-10
Project: Beaze Date Collected: 30-Ma	r-Carbondale, IL		Sample Size:	7.75 g	QC Batch No.: 2951 Date Extracted: 16-Apr	
Time Collected: 0935			%Solids:	64.8	Date Analyzed DB-5: 18-Apr-10 Date Analyzed DB-225: NA	
Analyte C	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard %R LCL-UCL ^d Qualifiers	s
2,3,7,8-TCDD	ND	0.425			<u>IS</u> 13C-2,3,7,8-TCDD 85.2 40 - 135	
1,2,3,7,8-PeCDD	ND	1.20			13C-1,2,3,7,8-PeCDD 75.4 40 - 135	
1,2,3,4,7,8-HxCDD	ND		1.66	UX	13C-1,2,3,4,7,8-HxCDD 94.8 40 - 135	
1,2,3,6,7,8-HxCDD	9.38			,	13C-1,2,3,6,7,8-HxCDD 91.0 40 - 135	
1,2,3,7,8,9-HxCDD	ND	3.39			13C-1,2,3,7,8,9-HxCDD 89.6 40 - 135	
1,2,3,4,6,7,8-HpCDD	226			•	13C-1,2,3,4,6,7,8-HpCDD 74.2 40 - 135	
OCDD	4970				13C-OCDD 77.7 40 - 135	
2,3,7,8-TCDF	ND		0.716	UX	13C-2,3,7,8-TCDF 87.7 40 - 135	
1,2,3,7,8-PeCDF	2.18			J	13C-1,2,3,7,8-PeCDF 77.7 40 - 135	
2,3,4,7,8-PeCDF	28.6				13C-2,3,4,7,8-PeCDF 83.7 40 - 135	
1,2,3,4,7,8-HxCDF	32.5				13C-1,2,3,4,7,8-HxCDF 94.2 40 - 135	
1,2,3,6,7,8-HxCDF	7.26				13C-1,2,3,6,7,8-HxCDF 95.7 40 - 135	
2,3,4,6,7,8-HxCDF	9.82				13C-2,3,4,6,7,8-HxCDF 85.8 40 - 135	
1,2,3,7,8,9-HxCDF	9.32				13C-1,2,3,7,8,9-HxCDF 80.5 40 - 135	
1,2,3,4,6,7,8-HpCDF	67.0				13C-1,2,3,4,6,7,8-HpCDF 74.6 40 - 135	
1,2,3,4,7,8,9-HpCDF	8.48				13C-1,2,3,4,7,8,9-HpCDF 68.6 40 - 135	
OCDF	263				13C-OCDF 65.8 40 - 135	
					CRS 37CI-2,3,7,8-TCDD 83.0 40 - 135	
Totals				9.44	Toxic Equivalent Quotient (TEQ) Data	
Total TCDD	ND		0.282	UX	TEQ (Min): 20.1	
Total PeCDD	1.79		7.62			
Total HxCDD	50.6		52.3		a. Sample specific estimated detection limit.	
Total HpCDD	472				b. Estimated maximum possible concentration.	
Total TCDF	8.59		9.31		c. Method detection limit.	
Total PeCDF	100		100		d. Lower control limit - upper control limit.	
Total HxCDF	202		203		e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors.(WHO)	
Total HpCDF	324				The results are reported in dry weight. The sample size is reported in wet weight.	

Approved By:

Sample ID: A1-48 (0-6")							EPA N	Method 829
Client Data Name: Arcadis		Sample Data Matrix:	C. I'	Laboratory Data				
Project: Beazer-Carbondale, IL		Sample Size:	Sediment		32550-012	Date Re		2-Apr-10
Date Collected: 30-Mar-10 Time Collected: 1050		%Solids:	6.72 g 76.0	`	2951	Date Ex		16-Apr-10
1050	nı a						nalyzed DB-225:	20-Apr-10
	DL	EMPC ^b	Qualifiers	Labeled Standard		%R	LCL-UCLd	Qualifiers
	0.476			<u>IS</u> 13C-2,3,7,8-TCDD		86.2	40 - 135	
1,2,3,7,8-PeCDD 2.63			J	13C-1,2,3,7,8-PeCD	D	66.5	40 - 135	
1,2,3,4,7,8-HxCDD 7.80				13C-1,2,3,4,7,8-Hx(CDD	83.0	40 - 135	
1,2,3,6,7,8-HxCDD •110			ゴ	13C-1,2,3,6,7,8-Hx0	CDD	86.3	40 - 135	
1,2,3,7,8,9-HxCDD 20.5				13C-1,2,3,7,8,9-Hx(CDD	84.0	40 - 135	
1,2,3,4,6,7,8-HpCDD 6130			E	13C-1,2,3,4,6,7,8-H	pCDD	109	40 - 135	
OCDD 89100			D,E J	13C-OCDD		113	40 - 135	D
2,3,7,8-TCDF 1.91				13C-2,3,7,8-TCDF		80.9	40 - 135	
1,2,3,7,8-PeCDF 9.60				13C-1,2,3,7,8-PeCD	F	68.4	40 - 135	
2,3,4,7,8-PeCDF 96.9			エー	13C-2,3,4,7,8-PeCD	F	68.2	40 - 135	
1,2,3,4,7,8-HxCDF 222			1	13C-1,2,3,4,7,8-HxC	CDF	87.3	40 - 135	
1,2,3,6,7,8-HxCDF 40.7				13C-1,2,3,6,7,8-HxC	CDF	94.1	40 - 135	
2,3,4,6,7,8-HxCDF 53.5				13C-2,3,4,6,7,8-HxC	DF	83.0	40 - 135	
1,2,3,7,8,9-HxCDF 46.3				13C-1,2,3,7,8,9-HxC		83.7	40 - 135	
1,2,3,4,6,7,8-HpCDF 980				13C-1,2,3,4,6,7,8-H _I		87.5	40 - 135	
1,2,3,4,7,8,9-HpCDF 87.8				13C-1,2,3,4,7,8,9-H		86.8	40 - 135	
OCDF 5620				13C-OCDF		112	40 - 135	
				<u>CRS</u> 37Cl-2,3,7,8-TCDD		85.9	40 - 135	
Totals				Toxic Equivalent Quotie	ent (TEQ) Data			
Total TCDD 2.25				TEQ (Min): 183				
Total PeCDD 14.1		18.7		200				
Total HxCDD 496			1	a. Sample specific estimated dete	ection limit			
Total HpCDD 12300			7	b. Estimated maximum possible				
Total TCDF 23.8		30.8	•	c. Method detection limit.				
Total PeCDF 422		432	7	d. Lower control limit - upper co	ntrol limit			
Total HxCDF 1560		_	5	e. TEQ based on (2005) World F		Toyic Fo	mivelent Ecotor-	WHO
Total HpCDF 5980			7	The results are reported in dry w				

Approved By: Martha M. Maier 21-Apr-2010 14:07

Sample ID: A2-11 (0-6")					lere gere	EPA I	Method 8290
Client Data	Sample Data		Laboratory Data	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
Name: ARCADIS	Matrix:	Sediment	Lab Sample:	32549-003	Date Re	ceived:	2-Apr-10
Project: Beazer-Carbondale, IL Date Collected: 29-Mar-10	Sample Size:	8.07 g	QC Batch No.:	2956	Date Ex	tracted:	19-Apr-10
Time Collected: 1550	%Solids:	62.5	Date Analyzed DB-5:	21-Apr-10	Dates A	nalyzed DB-225:	21-Apr-10
Analyte Conc. (pg/g) DL a	EMPC ^b	Qualifiers	Labeled Standar	d	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 9.63			<u>IS</u> 13C-2,3,7,8-TCDI)	91.4	40 - 135	
1,2,3,7,8-PeCDD 114			13C-1,2,3,7,8-PeC	DD	84.8	40 - 135	
1,2,3,4,7,8-HxCDD 805			13C-1,2,3,4,7,8-Hz	xCDD	86.8	40 - 135	
1,2,3,6,7,8-HxCDD 2010			13C-1,2,3,6,7,8-H	xCDD	95.1	40 - 135	
1,2,3,7,8,9-HxCDD 680			13C-1,2,3,7,8,9-Hz	kCDD	77.9	40 - 135	
1,2,3,4,6,7,8-HpCDD 111000		D	13C-1,2,3,4,6,7,8-1		72.8	40 - 135	D
OCDD 573000		D,E J	13C-OCDD	Piraling &	173	40 - 135	D,I
2,3,7,8-TCDF 9.19		,	13C-2,3,7,8-TCDF	7	80.7	40 - 135	2,1
1,2,3,7,8-PeCDF 37.8			13C-1,2,3,7,8-PeC		77.0	40 - 135	
2,3,4,7,8-PeCDF 221			13C-2,3,4,7,8-PeC		80.3	40 - 135	
1,2,3,4,7,8-HxCDF 675			13C-1,2,3,4,7,8-H		89.0	40 - 135	
1,2,3,6,7,8-HxCDF 154			13C-1,2,3,6,7,8-H		92.3	40 - 135	
2,3,4,6,7,8-HxCDF 311			13C-2,3,4,6,7,8-H)		83.3	40 - 135	
1,2,3,7,8,9-HxCDF 159			13C-1,2,3,7,8,9-Hz		82.1	40 - 135	
1,2,3,4,6,7,8-HpCDF 12100		Eσ	13C-1,2,3,4,6,7,8-1		79.0	40 - 135	
1,2,3,4,7,8,9-HpCDF 968			13C-1,2,3,4,7,8,9-1	-	75.4	40 - 135	
OCDF 61300		EJ	13C-OCDF	Majak .	76.8	40 - 135	
			<u>CRS</u> 37Cl-2,3,7,8-TCDl	D	99.8	40 - 135	
Totals		V 1081P5	Toxic Equivalent Quo				
Total TCDD 482			TEQ (Min): 210)0			
Total PeCDD 2820			,				
Total HxCDD 25600	t per		a. Sample specific estimated d	etection limit.		en e	
Total HpCDD 279000		D	b. Estimated maximum possib				
Total TCDF 150	152	$_{P}\mathcal{I}$	c. Method detection limit.				
Total PeCDF 1460	1460	P 5	d. Lower control limit - upper	control limit.			
Total HxCDF 17200		P J	e. TEQ based on (2005) World		on Toxic Fa	uivalent Factors	WHO)
Total HpCDF 73100		7	The results are reported in dry				•

Approved By:

Sample ID: A2-12 (0-6")						EPA I	Method 8290
Client Data Name: ARCADIS	Sample Data		Laboratory Data				
Project: Beazer-Carbondale, IL	Matrix:	Sediment	Lab Sample:	32549-001		eceived:	2-Apr-10
Date Collected: 29-Mar-10	Sample Size:	7.71 g	QC Batch No.:	2956		ktracted:	19-Apr-10
Time Collected: 1530	%Solids:	64.9	Date Analyzed DB-5:	21-Apr-10	Dates A	nalyzed DB-225:	21-Apr-10
Analyte Conc. (pg/g) DL ^a	EMPC ^b	Qualifiers	Labeled Stand	lard	%R	rcr-ncr _q	Qualifiers
2,3,7,8-TCDD 9.88			<u>IS</u> 13C-2,3,7,8-TC	DD	99.6	40 - 135	
1,2,3,7,8-PeCDD 173			13C-1,2,3,7,8-P	eCDD	86.6	40 - 135	
1,2,3,4,7,8-HxCDD 1280			13C-1,2,3,4,7,8-	HxCDD	82.1	40 - 135	
1,2,3,6,7,8-HxCDD 3980			13C-1,2,3,6,7,8-	HxCDD	89.6	40 - 135	
1,2,3,7,8,9-HxCDD 1080			13C-1,2,3,7,8,9-	HxCDD	70.0	40 - 135	
1,2,3,4,6,7,8-HpCDD 148000		EJ	13C-1,2,3,4,6,7,	8-HpCDD	74.1	40 - 135	
OCDD 627000		D,E 🎞	13C-OCDD		260	40 - 135	D,I
2,3,7,8-TCDF 8.77			13C-2,3,7,8-TC	DF	87.9	40 - 135	,
1,2,3,7,8-PeCDF 49.1			13C-1,2,3,7,8-P	eCDF	86.6	40 - 135	
2,3,4,7,8-PeCDF 302			13C-2,3,4,7,8-P		84.8		
1,2,3,4,7,8-HxCDF 1270			13C-1,2,3,4,7,8-	* .	87.4	and the second second	
1,2,3,6,7,8-HxCDF 289		P 5	13C-1,2,3,6,7,8-		92.5	40 - 135	
2,3,4,6,7,8-HxCDF 606			13C-2,3,4,6,7,8-		73.2		
1,2,3,7,8,9-HxCDF 255			13C-1,2,3,7,8,9-		81.9		
1,2,3,4,6,7,8-HpCDF 24700		E J	13C-1,2,3,4,6,7,		72.8		
1,2,3,4,7,8,9-HpCDF 2000		2	13C-1,2,3,4,7,8,		67.8		
OCDF 119000		Е 🗲	13C-OCDF		59.3		
			<u>CRS</u> 37Cl-2,3,7,8-TC	''. ''	94.3		
Totals			Toxic Equivalent Q				
Total TCDD 400				3120			
Total PeCDD 3350							
Total HxCDD 43800			a. Sample specific estimate	d detection limit.			
Total HpCDD 355000		ゴ	b. Estimated maximum pos				
Total TCDF 204		PJ	c. Method detection limit.				
Total PeCDF 2180		Pas	d. Lower control limit - up	per control limit.			
Total HxCDF 33200		P 🛣	e. TEQ based on (2005) W	'	on Toxic F	Equivalent Factors	(WHO)
Total HpCDF 141000		J	The results are reported in				` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

Approved By:

Sample ID: A2-13	(0-6")							EPA I	Method 829
Project: Be Date Collected: 29-	RCADIS azer-Carbondale, IL -Mar-10		Sample Data Matrix: Sample Size:	Soil 7.16 g	Laboratory Data Lab Sample: QC Batch No.:	32549 - 004 2967		eceived:	2-Apr-10 21-Apr-1(
Time Collected: 152			%Solids:	70.2	Date Analyzed DB-5:	22-Apr-10	Dates A	nalyzed DB-225:	26-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stan	dard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	0.480			J	<u>IS</u> 13C-2,3,7,8-TO	CDD	92.6	40 - 135	
1,2,3,7,8-PeCDD	3.63			J	13C-1,2,3,7,8-1	PeCDD	96.2	40 - 135	
1,2,3,4,7,8-HxCDD	13.2				13C-1,2,3,4,7,8	R-HxCDD	98.1	40 - 135	
1,2,3,6,7,8-HxCDD	29.0				13C-1,2,3,6,7,8	R-HxCDD	103	40 - 135	
1,2,3,7,8,9-HxCDD	12.5				13C-1,2,3,7,8,9	-HxCDD	102	40 - 135	
1,2,3,4,6,7,8-HpCDD	1000				13C-1,2,3,4,6,7	7,8-HpCDD	115	40 - 135	
OCDD	13500			EJ	13C-OCDD		134	40 - 135	
2,3,7,8-TCDF	1.23				13C-2,3,7,8-T0	CDF	88.7	40 - 135	
1,2,3,7,8-PeCDF	ND		0.850	υX	13C-1,2,3,7,8-1	PeCDF	99.3	40 - 135	
2,3,4,7,8-PeCDF	2.87			J	13C-2,3,4,7,8-1	PeCDF	103	40 - 135	
1,2,3,4,7,8-HxCDF	8.39				13C-1,2,3,4,7,8	-HxCDF	84.1	40 - 135	
1,2,3,6,7,8-HxCDF	3.32			J	13C-1,2,3,6,7,8		91.4	40 - 135	
2,3,4,6,7,8-HxCDF	6.83				13C-2,3,4,6,7,8	Application of the property of the contract of	90.0	40 - 135	
1,2,3,7,8,9-HxCDF	1.88			J	13C-1,2,3,7,8,9		93.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	251				13C-1,2,3,4,6,7		97.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	16.4				13C-1,2,3,4,7,8	•	102	40 - 135	
OCDF	1350				13C-OCDF	ili ja Magada	114	40 - 135	
					CRS 37C1-2,3,7,8-T	CDD	87.1	40 - 135	
Totals	PARTY. PARTY. PARTY.				Toxic Equivalent Q			10 155	
Total TCDD	92.6		99.0			29.7			
Total PeCDD	108		110		,				
Total HxCDD	280				a. Sample specific estimat	ed detection limit			
Total HpCDD	2020				b. Estimated maximum po				
Total TCDF	23.3		31.5		c. Method detection limit.				
Total PeCDF	31.5		33.3		d. Lower control limit - up				
Total HxCDF	262				e. TEQ based on (2005) V		n Torris P	quirelant P	MITO
Total HpCDF	1260								
Total HpCDF	1260				The results are reported in	dry weight. The sample	size is rep	orted in wet weigh	ıt.

Approved By:

Sample ID: FIELD	DUPLICATE#1		e de la companya de l					EPA I	
Client Data			Sample Data		Laboratory Data				
	ADIS er-Carbondale, IL		Matrix:	Soil	Lab Sample:	32549-005	Date Re	eceived:	2-Apr-10
-	far-10		Sample Size:	7.32 g	QC Batch No.:	2967	Date Ex	ktracted:	21-Apr-10
Time Collected: NA			%Solids:	68.5	Date Analyzed DB-5:	22-Apr-10	Dates A	nalyzed DB-225:	26-Apr-10
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Sta	andard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	0.768		A. 1	J	<u>IS</u> 13C-2,3,7,8-	TCDD	94.9	40 - 135	
1,2,3,7,8-PeCDD	7.55				13C-1,2,3,7,	8-PeCDD	90.8	40 - 135	
1,2,3,4,7,8-HxCDD	30.0				13C-1,2,3,4,	7,8-HxCDD	99.5	40 - 135	
1,2,3,6,7,8-HxCDD	72.6				13C-1,2,3,6,	7,8-HxCDD	108	40 - 135	
1,2,3,7,8,9-HxCDD	30.8				13C-1,2,3,7,	8,9-HxCDD	98.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	2570				13C-1,2,3,4,6	6,7,8-HpCDD	99.3	40 - 135	
OCDD	35100			E	13C-OCDD		103	40 - 135	
2,3,7,8-TCDF	2.26				13C-2,3,7,8-	TCDF	92.9		
1,2,3,7,8-PeCDF	2.92			J	13C-1,2,3,7,8	Management and the control of the control of	92.8	100	
2,3,4,7,8-PeCDF	7.15				13C-2,3,4,7,8		95.6		
1,2,3,4,7,8-HxCDF	21.8				13C-1,2,3,4,	A REPORT OF THE PARTY OF THE PA	89.7	47 47 7	
1,2,3,6,7,8-HxCDF	8.42				13C-1,2,3,6,3		93.9	40 - 135	
2,3,4,6,7,8-HxCDF	16.1				13C-2,3,4,6,		90.6	and the state of t	
1,2,3,7,8,9-HxCDF	4.80			J	13C-1,2,3,7,8		90.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	611				13C-1,2,3,4,6		85.9		* 1
1,2,3,4,7,8,9-HpCDF	39.5				13C-1,2,3,4,7	•	82.2		
OCDF	3190				13C-OCDF		87.3	40 - 135	
					CRS 37Cl-2,3,7,8-	TCDD	84.9	40 - 135	
Totals						Quotient (TEQ) Da		10 133	
Total TCDD	119				TEQ (Min):	72.9			
Total PeCDD	207				(. – . •			
Total HxCDD	778				a. Sample specific estir	nated detection limit		er en	-
Total HpCDD	5640					possible concentration.			***
Total TCDF	47.8		48.2		c. Method detection lin				, which is
Total PeCDF	85.0		85.5		d. Lower control limit -				
Total HxCDF	729) World Health Organization	n Tovic E	quivalent Footo (MHU)
Total HpCDF	3370					in dry weight. The sample			
					The results are reported	i iii diy weight. The sample	size is rep	orted in wet weigh	IT.

Approved By:

Sample ID: A2-14 ((0-6'')							EPA N	
Project: Beaz	CADIS zer-Carbondale, IL ⁄lar-10		Sample Data Matrix: Sample Size: %Solids:	Soil 2.62 g 77.7	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32549-006 2975 25-Apr-10	Date Extracted:		2-Apr-10 23-Apr-10 NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stan	dard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	16.0 237 1430 6330 2300 296000 4850000			EJ	13C-2,3,7,8-TC 13C-1,2,3,7,8-1 13C-1,2,3,4,7,8 13C-1,2,3,6,7,8 13C-1,2,3,7,8,9 13C-1,2,3,4,6,7	PeCDD 3-HxCDD 3-HxCDD 3-HxCDD	82.6 71.3 81.0 87.3 81.5 120	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND 25.6 104 871 241 646 142 31600 2580 202000	6.91		D,E J	13C-OCDD 13C-2,3,7,8-TC 13C-1,2,3,7,8-TC 13C-2,3,4,7,8-TC 13C-1,2,3,4,7,8 13C-1,2,3,6,7,8 13C-1,2,3,7,8,9 13C-1,2,3,4,6,7 13C-1,2,3,4,7,8 13C-0CDF CRS 37C1-2,3,7,8-TC	PeCDF -HxCDF -HxCDF -HxCDF -HxCDF -HxCDF -HxCDF -8-HpCDF -9-HpCDF	160 80.2 71.0 72.6 81.2 83.0 79.8 76.5 81.6 71.4 130 75.2	40 - 135 40 - 135	D,I
Totals					Toxic Equivalent Q		-		
Total TCDD Total PeCDD Total HxCDD	118 1180 34400		137 1210		TEQ (Min): a. Sample specific estimate	6300			
Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	570000 159 1260 38400 248000		177	4 H H H	b. Estimated maximum po c. Method detection limit. d. Lower control limit - up e. TEQ based on (2005) W The results are reported in	oper control limit. Vorld Health Organizatio			

Approved By:

Sample ID: A2-15 (0-6")						EPA I	Method 8290
Client Data		Sample Data		Laboratory Data			·	
	CADIS	Matrix:	Soil	Lab Sample:	32549-007	7 Date Received:		2-Apr-10
•	er-Carbondale, IL Iar-10	Sample Size:	7.31 g	QC Batch No.:	2967	Date Ex	tracted:	21-Apr-10
Time Collected: 1510	141-10	%Solids:	69.7	Date Analyzed DB-5:	24-Apr-10	Dates A	nalyzed DB-225:	26-Apr-10
Analyte	Conc. (pg/g) DL	a EMPC ^b	Qualifiers	Labeled Stand	lard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	3.20			<u>IS</u> 13C-2,3,7,8-TC	DD	94.3	40 - 135	
1,2,3,7,8-PeCDD	48.1			13C-1,2,3,7,8-P	eCDD	96.5	40 - 135	
1,2,3,4,7,8-HxCDD	152			13C-1,2,3,4,7,8	-HxCDD	105	40 - 135	
1,2,3,6,7,8-HxCDD	1820			13C-1,2,3,6,7,8		107	40 - 135	
1,2,3,7,8,9-HxCDD	355			13C-1,2,3,7,8,9		101	40 - 135	
1,2,3,4,6,7,8-HpCDD	79800		D,E J	13C-1,2,3,4,6,7,		89.2		D
OCDD	537000	•	D,E J	13C-OCDD		89.2		D,I
2,3,7,8-TCDF	5.64		,	13C-2,3,7,8-TC	DF	95.4		2,1
1,2,3,7,8-PeCDF	25.7			13C-1,2,3,7,8-P		87.0		
2,3,4,7,8-PeCDF	153			13C-2,3,4,7,8-P		100	40 - 135	
1,2,3,4,7,8-HxCDF	733			13C-1,2,3,4,7,8-		91.1	40 - 135	
1,2,3,6,7,8-HxCDF	136			13C-1,2,3,6,7,8-		91.3	40 - 135	
2,3,4,6,7,8-HxCDF	281			13C-2,3,4,6,7,8-		91.5	40 - 135	
1,2,3,7,8,9-HxCDF	155			13C-1,2,3,7,8,9-		93.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	10500		EJ	13C-1,2,3,4,6,7,		91.5		
1,2,3,4,7,8,9-HpCDF	1200			13C-1,2,3,4,7,8,	-	96.0	40 - 135	
OCDF	61500		D	13C-OCDF		73.2		D,I
				CRS 37Cl-2,3,7,8-TC	CDD	90.1	40 - 135	,-
Totals				Toxic Equivalent Q		ata e		
Total TCDD	35.0	36.9		TEQ (Min):	1560			
Total PeCDD	318							
Total HxCDD	17100			a. Sample specific estimate	ed detection limit.			
Total HpCDD	235000		DJ	b. Estimated maximum pos	ssible concentration.			
Total TCDF	75.8	79.1	PJ	c. Method detection limit.				
Total PeCDF	983		PJ	d. Lower control limit - up	per control limit.			
Total HxCDF	15800		PJ	e. TEQ based on (2005) W		ion Toxic E	quivalent Factors.(WHO)
Total HpCDF	72700		<u> </u>	The results are reported in				

Approved By:

Sample ID: A2-16 (0-6")							EPA I	Method 8290
Client Data Name: ARCADIS Project: Beazer-Carbon Date Collected: 29-Mar-10 Time Collected: 1500	dale, IL	Sample Data Matrix: Sample Size: %Solids:	Soil 3.41 g 60.8	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32549-008 2975 25-Apr-10	Date Re Date Ex Date Ar		2-Apr-10 23-Apr-10 NA
Analyte Conc. (pg	g/g) DL ^a	EMPC ^b	Qualifiers	Labeled Sta	ndard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD ND 1,2,3,7,8-PeCDD 133 1,2,3,4,7,8-HxCDD 1090 1,2,3,6,7,8-HxCDD 1170 1,2,3,4,6,7,8-HxCDD 252000 OCDD 3270000 2,3,7,8-TCDF ND 1,2,3,7,8-PeCDF 62.4 2,3,4,7,8-PeCDF 332 1,2,3,4,7,8-HxCDF 1730 1,2,3,6,7,8-HxCDF 352 2,3,4,6,7,8-HxCDF 355 1,2,3,7,8,9-HxCDF 355 1,2,3,4,6,7,8-HpCDF 27900 1,2,3,4,7,8,9-HpCDF 2470	6.64	7.52	E J D,E J	IS 13C-2,3,7,8-7 13C-1,2,3,7,8 13C-1,2,3,4,7 13C-1,2,3,6,7 13C-1,2,3,4,6 13C-0CDD 13C-2,3,7,8-7 13C-1,2,3,7,8 13C-1,2,3,4,7 13C-1,2,3,4,7 13C-1,2,3,4,7 13C-1,2,3,4,6,7 13C-1,2,3,4,6 13C-1,2,3,4,6	-PeCDD ,8-HxCDD ,8-HxCDD ,9-HxCDD ,7,8-HpCDD CCDF -PeCDF -PeCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,9-HxCDF	92.7 81.1 90.2 92.9 88.6 121 166 90.1 81.0 83.9 89.6 92.4 86.2 81.2 83.6 78.6	40 - 135 40 - 135	D,I
OCDF 158000			E J	13C-OCDF <u>CRS</u> 37Cl-2,3,7,8-7	TCDD	115 84.9	40 - 135	·
Total TCDD 139		144		TEQ (Min):	Quotient (TEQ) Da	ata		
Total PeCDD 1710 Total HxCDD 52200 Total HpCDD 757000		1790	-	a. Sample specific estim b. Estimated maximum	nated detection limit.			
Total TCDF 167 Total PeCDF 2210 Total HxCDF 40300		186	PJ	c. Method detection lim d. Lower control limit -	it.	on Toylo E	quivalent Fastare	(WHO)
Total HpCDF 222000					in dry weight. The sample			

Approved By:

Sample ID: A2-17 (0-6")					EPA Method 829			
Client Data Name: ARCADIS Project: Beazer-Carbondale, IL	,	Sample Data Matrix: Sample Size:	Soil 2.78 g	Laboratory Data Lab Sample: 32549-009 QC Batch No.: 2975	Date Rec		2-Apr-10	
Date Collected: 29-Mar-10 Time Collected: 1440		%Solids:	2.78 g 72.5	QC Batch No.: 2975 Date Analyzed DB-5: 25-Apr-10	Date And	alyzed DB-225:	23-Apr-10	
Analyte Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard		LCL-UCL ^d	NA Qualifiers	
2,3,7,8-TCDD 9.44		Billic					Quaimers	
1,2,3,7,8-PeCDD 137			J		91.6	40 - 135		
1,2,3,4,7,8-HxCDD 718				13C-1,2,3,7,8-PeCDD	84.1	40 - 135		
1,2,3,6,7,8-HxCDD 3920				13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	94.0 96.3	40 - 135 40 - 135		
1,2,3,7,8,9-HxCDD 1040				13C-1,2,3,6,7,8-HxCDD	90.3	40 - 135		
1,2,3,4,6,7,8-HpCDD 181000			D,E J	13C-1,2,3,4,6,7,8-HpCDD	89.0	40 - 135	D	
OCDD 2630000			D,E J	13C-OCDD	138	40 - 135	D,H	
2,3,7,8-TCDF ND	10.0		ر ر کا,ک	13C-2,3,7,8-TCDF	87.7	40 - 135	<i>D</i> ,П	
1,2,3,7,8-PeCDF 35.4			J	13C-1,2,3,7,8-PeCDF	84.6	40 - 135		
2,3,4,7,8-PeCDF 203			·	13C-2,3,4,7,8-PeCDF	85.4	40 - 135		
1,2,3,4,7,8-HxCDF 961				13C-1,2,3,4,7,8-HxCDF	87.7	40 - 135		
1,2,3,6,7,8-HxCDF 242				13C-1,2,3,6,7,8-HxCDF	86.6	40 - 135		
2,3,4,6,7,8-HxCDF 482				13C-2,3,4,6,7,8-HxCDF	90.5	40 - 135		
1,2,3,7,8,9-HxCDF 198				13C-1,2,3,7,8,9-HxCDF	94.8	40 - 135		
1,2,3,4,6,7,8-HpCDF 22200				13C-1,2,3,4,6,7,8-HpCDF	104	40 - 135		
1,2,3,4,7,8,9-HpCDF 1670				13C-1,2,3,4,7,8,9-HpCDF	112	40 - 135		
OCDF 130000			EJ	13C-OCDF	183	40 - 135	Н	
				<u>CRS</u> 37Cl-2,3,7,8-TCDD	82.3	40 - 135		
Totals				Toxic Equivalent Quotient (TEQ) Date	a e			
Total TCDD 122		169		TEQ (Min): 3840	4.74		······································	
Total PeCDD 906		1020						
Total HxCDD 22500				a. Sample specific estimated detection limit.	green had			
Total HpCDD 368000		387000	- F	b. Estimated maximum possible concentration.				
Total TCDF 93.8		124		c. Method detection limit.				
Total PeCDF 1450		1480		d. Lower control limit - upper control limit.				
Total HxCDF 24500			P 5	e. TEQ based on (2005) World Health Organization	Toxic Eq	uivalent Factors.(WHO)	
Total HpCDF 162000				The results are reported in dry weight. The sample s				

Approved By:

Sample ID: A2-18 (0-6")							EPA N	Aethod 8290
Client Data Name: ARCADIS		Sample Data	·	Laboratory Data		<u></u> :		
Project: Beazer-Carbondale, IL		Matrix:	Soil	Lab Sample:	32549-010	Date Re	ceived:	2-Apr-10
Date Collected: 29-Mar-10		Sample Size:	2.99 g	QC Batch No.:	2975	Date Ex		23-Apr-10
Time Collected: 1430		%Solids:	67.6	Date Analyzed DB-5:	25-Apr-10	Date An	alyzed DB-225:	NA
Analyte Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	dard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD 7.57			J	<u>IS</u> 13C-2,3,7,8-TC	DD	93.8	40 - 135	
1,2,3,7,8-PeCDD ND		48.3	vx	13C-1,2,3,7,8-F	PeCDD	86.0	40 - 135	
1,2,3,4,7,8-HxCDD 182			•	13C-1,2,3,4,7,8	-HxCDD	90.4	40 - 135	
1,2,3,6,7,8-HxCDD 890				13C-1,2,3,6,7,8	-HxCDD	94.0	40 - 135	
1,2,3,7,8,9-HxCDD 296				13C-1,2,3,7,8,9	-HxCDD	88.8	40 - 135	
1,2,3,4,6,7,8-HpCDD 37000				13C-1,2,3,4,6,7	,8-HpCDD	86.3	40 - 135	
OCDD 583000			E 🎜	13C-OCDD		125	40 - 135	
2,3,7,8-TCDF 9.35			J	13C-2,3,7,8-TC	DF	91.8	40 - 135	
1,2,3,7,8-PeCDF 50.2			J	13C-1,2,3,7,8-F	PeCDF	83.0	40 - 135	
2,3,4,7,8-PeCDF 393				13C-2,3,4,7,8-F	PeCDF	82.4	40 - 135	
1,2,3,4,7,8-HxCDF 994				13C-1,2,3,4,7,8	-HxCDF	90.2	40 - 135	
1,2,3,6,7,8-HxCDF 192				13C-1,2,3,6,7,8	-HxCDF	91.4	40 - 135	
2,3,4,6,7,8-HxCDF 278				13C-2,3,4,6,7,8	-HxCDF	89.0	40 - 135	
1,2,3,7,8,9-HxCDF 218				13C-1,2,3,7,8,9		84.6	40 - 135	
1,2,3,4,6,7,8-HpCDF 4580				13C-1,2,3,4,6,7		76.2	40 - 135	
1,2,3,4,7,8,9-HpCDF 440				13C-1,2,3,4,7,8	•	75.2	40 - 135	
OCDF 25100				13C-OCDF		81.3	40 - 135	
				CRS 37C1-2,3,7,8-T0	CDD	89.0	40 - 135	
Totals			•	Toxic Equivalent Q		Data e		
Total TCDD 118		150		TEQ (Min):	1040	n sprin		
Total PeCDD 323		380						
Total HxCDD 6400				a. Sample specific estimat	ed detection limit.			
Total HpCDD 88000				b. Estimated maximum po	ssible concentration.			
Total TCDF 43.7		55.7		c. Method detection limit.				
Total PeCDF 1780				d. Lower control limit - up	oper control limit.			
Total HxCDF 8290				e. TEQ based on (2005) W	•	tion Toxic E	quivalent Factors	WHO)
Total HpCDF 28600				The results are reported in			-	

Approved By:

Sample ID: A2-19 (0-6")		1 1 1		are a la calendaria.	EPA I	Method 8290
Client Data Name: ARCADIS	Sample Data		Laboratory Data	•		
Project: Beazer-Carbondale, IL	Matrix:	Sediment	Lab Sample: 32549-011	Date Re	eceived:	2-Apr-10
Date Collected: 29-Mar-10	Sample Size:	8.32 g	QC Batch No.: 2956	Date Ex	ktracted:	19-Apr-10
Time Collected: 1540	%Solids:	60.6	Date Analyzed DB-5: 21-Apr-10	Dates A	nalyzed DB-225:	21-Apr-10
Analyte Conc. (pg/g) DL ^a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 13.6			<u>IS</u> 13C-2,3,7,8-TCDD	130	40 - 135	
1,2,3,7,8-PeCDD 244			13C-1,2,3,7,8-PeCDD	111	40 - 135	
1,2,3,4,7,8-HxCDD 2000			13C-1,2,3,4,7,8-HxCDD	95.2	40 - 135	
1,2,3,6,7,8-HxCDD 6970		EJ	13C-1,2,3,6,7,8-HxCDD	106	40 - 135	
1,2,3,7,8,9-HxCDD 2110			13C-1,2,3,7,8,9-HxCDD	63.4	40 - 135	
1,2,3,4,6,7,8-HpCDD 262000		D,E J	13C-1,2,3,4,6,7,8-HpCDD	83.9	40 - 135	D
OCDD 709000		D,E J	13C-OCDD	481	40 - 135	D,I
2,3,7,8-TCDF 11.0			13C-2,3,7,8-TCDF	99.2	40 - 135	_ ,-
1,2,3,7,8-PeCDF 62.3			13C-1,2,3,7,8-PeCDF	89.6	40 - 135	
2,3,4,7,8-PeCDF 303			13C-2,3,4,7,8-PeCDF	96.0	40 - 135	
1,2,3,4,7,8-HxCDF 1560			13C-1,2,3,4,7,8-HxCDF	100	40 - 135	
1,2,3,6,7,8-HxCDF 366			13C-1,2,3,6,7,8-HxCDF	107	40 - 135	
2,3,4,6,7,8-HxCDF 929			13C-2,3,4,6,7,8-HxCDF	83.9		
1,2,3,7,8,9-HxCDF 295			13C-1,2,3,7,8,9-HxCDF	95.0		
1,2,3,4,6,7,8-HpCDF 38100		EZ	13C-1,2,3,4,6,7,8-HpCDF	79.8	40 - 135	
1,2,3,4,7,8,9-HpCDF 3210		•	13C-1,2,3,4,7,8,9-HpCDF	75.2		
OCDF 186000		EJ	13C-OCDF	57.0		
			<u>CRS</u> 37Cl-2,3,7,8-TCDD	129	40 - 135	
Totals	\$- 01/45************************************		Toxic Equivalent Quotient (TEQ) D	ata e		
Total TCDD 385			TEQ (Min): 5080	2.7 %		
Total PeCDD 3430		*				
Total HxCDD 60100		5	a. Sample specific estimated detection limit.			
Total HpCDD 620000		DJ	b. Estimated maximum possible concentration.			
Total TCDF 264	266	PJ	c. Method detection limit.			
Total PeCDF 2590		PJ	d. Lower control limit - upper control limit.			
Total HxCDF 50300		PJ	e. TEQ based on (2005) World Health Organiza	tion Toxic E	quivalent Factors	WHO)
Total HpCDF 210000		3	The results are reported in dry weight. The samp			

Approved By:

Sample ID: A3-18	(0-6'')		-				EPA I	Method 8290
	er-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Sediment 6.92 g 72.4	QC Batch No.: 29	2550-015 Date Ro 951 Date Ex 8-Apr-10 Date Ar		2-Apr-10 16-Apr-10 NA
Analyte	Conc. (pg/g)	DL a	$\mathbf{EMPC}^{\mathbf{b}}$	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.651			<u>IS</u> 13C-2,3,7,8-TCDD	88.3	40 - 135	
1,2,3,7,8-PeCDD	ND	1.23			13C-1,2,3,7,8-PeCDE	70.3	40 - 135	
1,2,3,4,7,8-HxCDD	1.41			J	13C-1,2,3,4,7,8-HxCl	DD 91.0	40 - 135	
1,2,3,6,7,8-HxCDD	ND		2.69	UX	13C-1,2,3,6,7,8-HxCl	DD 92.8	40 - 135	
1,2,3,7,8,9-HxCDD	ND	3.63			13C-1,2,3,7,8,9-HxCl	DD 89.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	111				13C-1,2,3,4,6,7,8-Hp	CDD 71.3	40 - 135	
OCDD	4200				13C-OCDD	72.7	40 - 135	
2,3,7,8-TCDF	ND	0.460			13C-2,3,7,8-TCDF	83.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.851			13C-1,2,3,7,8-PeCDF	72.1	40 - 135	
2,3,4,7,8-PeCDF	0.863			J	13C-2,3,4,7,8-PeCDF	70.0	40 - 135	
1,2,3,4,7,8-HxCDF	0.955			J	13C-1,2,3,4,7,8-HxCl	DF 88.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.821			13C-1,2,3,6,7,8-HxCI	DF 93.8	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.968			13C-2,3,4,6,7,8-HxCI	DF 85.8	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.34			13C-1,2,3,7,8,9-HxCI	DF 80.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	13.4			·	13C-1,2,3,4,6,7,8-Hp	CDF 73.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.38			13C-1,2,3,4,7,8,9-Hp	CDF 69.1	40 - 135	
OCDF	70.8				13C-OCDF	61.5	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDD	87.3	40 - 135	
Totals					Toxic Equivalent Quotien	nt (TEQ) Data e		
Total TCDD	0.872				TEQ (Min): 3.02			
Total PeCDD	1.11							
Total HxCDD	17.3		20.0		a. Sample specific estimated detec	ction limit.		
Total HpCDD	260				b. Estimated maximum possible co			
Total TCDF	ND		0.365	UX	c. Method detection limit.			
Total PeCDF	1.93		3.94	•	d. Lower control limit - upper con	trol limit.		
Total HxCDF	16.8		18.2		e. TEQ based on (2005) World He		quivalent Factors	WHO)
Total HpCDF	68.0				The results are reported in dry we			

Approved By:

Sample ID: A3-19	(0-6'')		and the second					EPA N	Method 8290
	zer-Carbondale, IL 1ar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 8.02 g 63.4	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32550-016 2951 18-Apr-10	Date Re Date Ex Dates A	eceived:	2-Apr-10 16-Apr-10 20-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND 8.66 19.9 59.1 30.7		0.854	υx	IS 13C-2,3,7,8-TCD 13C-1,2,3,7,8-Pec 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H 13C-1,2,3,7,8,9-H	CDD IxCDD IxCDD	91.0 71.8 86.4 91.6 86.4	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	
1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF	2000 23800 1.19 ND		2.45	E II	13C-1,2,3,4,6,7,8 13C-OCDD 13C-2,3,7,8-TCD 13C-1,2,3,7,8-Pec		76.0 105 83.5 69.2	40 - 135 40 - 135 40 - 135 40 - 135	
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	20.3 36.1 13.7 24.0			- /-	13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H	CDF IxCDF IxCDF	71.3 98.0 97.6	40 - 135 40 - 135 40 - 135	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	10.5 435 38.6				13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H 13C-1,2,3,4,6,7,8- 13C-1,2,3,4,7,8,9-	xCDF HpCDF	84.0 76.8 72.2 70.5	40 - 135 40 - 135 40 - 135 40 - 135	
OCDF	2080				13C-OCDF <u>CRS</u> 37Cl-2,3,7,8-TCD	DD .	66.2 88.0	40 - 135 40 - 135	
Totals					Toxic Equivalent Que	otient (TEQ) Dat	ta e		
Total TCDD Total PeCDD	12.2 67.1		21.1 74.0		TEQ (Min): 66	.8			
Total HxCDD Total HpCDD Total TCDE	520 4670		530		a. Sample specific estimated b. Estimated maximum possi				
Total TCDF Total PeCDF Total HxCDF Total HpCDF	27.6 144 680 2290		29.4 147		c. Method detection limit. d. Lower control limit - upper e. TEQ based on (2005) Worl The results are reported in dry	d Health Organization			

Approved By:

Client Data			Sample Data		Laborato	orv Data				· · · · · · · · · · · · · · · · · · ·
Name: Arca			Matrix:	Sediment	Lab Samp	•	32550-013	Date Re	eceived:	2-Apr-10
	zer-Carbondale, IL		Sample Size:	9.35 g	QC Batch	•	2951		stracted:	16-Apr-10
Date Collected: 30-N Time Collected: 1100	∕lar-10		%Solids:	53.7	1	lyzed DB-5:	18-Apr-10		nalyzed DB-225:	20-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	L	abeled Stand		%R	LCL-UCL ^d	·
2,3,7,8-TCDD	ND		1.80	UX	<u>IS</u> 130	C-2,3,7,8-TC	DD	87.4		
1,2,3,7,8-PeCDD	14.4				130	C-1,2,3,7,8-P	'eCDD	68.8	40 - 135	
1,2,3,4,7,8-HxCDD	37.7				130	C-1,2,3,4,7,8	-HxCDD	90.1	40 - 135	
1,2,3,6,7,8-HxCDD	118				ı	C-1,2,3,6,7,8		90.7	40 - 135	
1,2,3,7,8,9-HxCDD	69.9			:	l .	C-1,2,3,7,8,9		86.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	4150			EJ	J	C-1,2,3,4,6,7		89.6		
OCDD	49100			E 5		C-OCDD		146	40 - 135	
2,3,7,8-TCDF	1.90			مد)	C-2,3,7,8-TC	DF	85.4	40 - 135	
1,2,3,7,8-PeCDF	3.77			j .	i	C-1,2,3,7,8-P		69.4		
2,3,4,7,8-PeCDF	25.6					C-2,3,4,7,8-P		71.4	40 - 135	
1,2,3,4,7,8-HxCDF	46.5					C-1,2,3,4,7,8		90.7	40 - 135	
1,2,3,6,7,8-HxCDF	22.3				ł	C-1,2,3,6,7,8-		96.2	40 - 135	
2,3,4,6,7,8-HxCDF	41.0				1	C-2,3,4,6,7,8-		84.2	40 - 135	
1,2,3,7,8,9-HxCDF	11.0				1	C-1,2,3,7,8,9		82.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	815				ļ	C-1,2,3,4,6,7,		79.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	60.7				f	C-1,2,3,4,7,8,	-	74.1	40 - 135	
OCDF	3660				l	C-OCDF		77.8	40 - 135	
		•			<u>CRS</u> 370	CI-2,3,7,8-TC	CDD	83.5	40 - 135	
Totals					Toxic E	quivalent Q	uotient (TEQ) Da	ıta ^e		
Total TCDD	25.1		28.3		TEQ (N	/lin): !	123			
Total PeCDD	108					,				
Total HxCDD	884				a. Sample	specific estimate	ed detection limit.			
Total HpCDD	8510			5			ssible concentration.			
Total TCDF	69.1		78.9			detection limit.				
Total PeCDF	277			,	d. Lower c	control limit - up	per control limit.			
Total HxCDF	991						orld Health Organization	on Toxic E	quivalent Factors (WHO)
Total HpCDF	3910						dry weight. The sample			

Approved By:

Sample ID: FIELD	DUPLICATE #4				EPA Method 82
	dis er-Carbondale, IL far-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 10.2 g 49.2	Laboratory Data
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.43 16.2 40.8 133 72.5 4430 51800 2.64 4.47 30.6 54.2 23.3 48.9 11.9 925 67.2 3950			E I	13C-OCDD 132 40 - 135 13C-2,3,7,8-TCDF 79.4 40 - 135 13C-1,2,3,7,8-PeCDF 67.1 40 - 135 13C-2,3,4,7,8-PeCDF 68.3 40 - 135 13C-1,2,3,4,7,8-HxCDF 83.9 40 - 135 13C-1,2,3,6,7,8-HxCDF 88.5 40 - 135 13C-2,3,4,6,7,8-HxCDF 78.8 40 - 135 13C-1,2,3,7,8,9-HxCDF 75.8 40 - 135 13C-1,2,3,4,6,7,8-HpCDF 71.3 40 - 135 13C-1,2,3,4,7,8,9-HpCDF 67.9 40 - 135 13C-0CDF 68.0 40 - 135
Totals	4				CRS 37Cl-2,3,7,8-TCDD 81.1 40 - 135 Toxic Equivalent Quotient (TEQ) Data
Total TCDD Total PeCDD	28.5 114		32.7 123	1	TEQ (Min): 138
Total HxCDD Total HpCDD Total TCDF	970 8980 81.8		92.3	J	 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. c. Method detection limit.
Total PeCDF Total HxCDF Total HpCDF	309 1130 4200		310		d. Lower control limit - upper control limit. e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors (WHO) The results are reported in dry weight. The sample size is reported in wet weight.

Approved By:

Sample ID: A3-21 (0)-6'')									EPA N	
Client Data Name: Arcadi Project: Beazer Date Collected: 30-Ma Time Collected: 1145	r-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Sediment 9.80 g 51.0	Lab S QC B	ratory Data Sample: atch No.: Analyzed DB-5:	32550- 2951 18-Apr	D	ate Ex	ceived: tracted: nalyzed DB-225:	2-Apr-10 16-Apr-10 20-Apr-10
Analyte Co	onc. (pg/g)	DL a	EMPC ^b	Qualifiers		Labeled Star	ıdard	9/	бR	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	32.9				<u>IS</u>	13C-2,3,7,8-T	CDD		94.6	40 - 135	
1,2,3,7,8-PeCDD	375					13C-1,2,3,7,8-	PeCDD		73.3	40 - 135	
1,2,3,4,7,8-HxCDD	1360					13C-1,2,3,4,7,	8-HxCDD		97.8	40 - 135	
1,2,3,6,7,8-HxCDD	4960			EJ		13C-1,2,3,6,7,			107	40 - 135	
1,2,3,7,8,9-HxCDD	2230			_		13C-1,2,3,7,8,			87.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	160000			D.E 🎜		13C-1,2,3,4,6,	7,8-HpCDD		132	40 - 135	D
OCDD	570000			D,E 🛣	1	13C-OCDD			602	40 - 135	D,I,H
2,3,7,8-TCDF	16.2					13C-2,3,7,8-Te	CDF		83.5	40 - 135	-,.,
1,2,3,7,8-PeCDF	92.7					13C-1,2,3,7,8-	PeCDF		70.9	40 - 135	
2,3,4,7,8-PeCDF	721				1	13C-2,3,4,7,8-			70.6	40 - 135	
1,2,3,4,7,8-HxCDF	2580			× .	l	13C-1,2,3,4,7,	the state of the s		113	40 - 135	
1,2,3,6,7,8-HxCDF	759		ş.			13C-1,2,3,6,7,8	8-HxCDF		110	40 - 135	
2,3,4,6,7,8-HxCDF	1360				l	13C-2,3,4,6,7,8			88.7	40 - 135	
1,2,3,7,8,9-HxCDF	441				1	13C-1,2,3,7,8,9			85.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	40600			EJ		13C-1,2,3,4,6,			124	40 - 135	
1,2,3,4,7,8,9-HpCDF	3290					13C-1,2,3,4,7,	•		73.4	40 - 135	
OCDF	207000			E I		13C-OCDF	•		127	40 - 135	
					<u>CRS</u>	37Cl-2,3,7,8-T	CDD		96.7	40 - 135	
Totals						c Equivalent (e		
Total TCDD	296		312		TEO	(Min):	4270				
Total PeCDD	2730										
Total HxCDD	47300			ゴ	a. San	nple specific estima	ted detection lin	nit.			
Total HpCDD	365000			7	1	mated maximum p					
Total TCDF	394		396		i	hod detection limit					
Total PeCDF	5700			PJ		ver control limit - u		nit.			
Total HxCDF	57400			PJ		Q based on (2005) \			oxic Ec	mivalent Factors (WHO)
Total HpCDF	277000			3	-	sults are reported in				A Company of the Comp	

Approved By:

Sample ID: A3-22	(0-6'')								EPA N	Method 829
Client Data			Sample Data		Labo	oratory Data		- W		
Name: Arca Project: Bear	idis zer-Carbondale, IL		Matrix:	Sediment	Lab	Sample:	32550-018	Date Re	ceived:	2-Apr-10
	Mar-10		Sample Size:	11.9 g	QC I	Batch No.:	2951	Date Ex	tracted:	16-Apr-10
Time Collected: 1135			%Solids:	42.5	Date	Analyzed DB-5:	18-Apr-10	Dates A	nalyzed DB-225:	20-Apr-10
Analyte	Conc. (pg/g)	DL ^a	EMPC ^b	Qualifiers		Labeled Stan	dard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	22.4				<u>IS</u>	13C-2,3,7,8-TC	CDD	91.7	40 - 135	
1,2,3,7,8-PeCDD	252					13C-1,2,3,7,8-I	PeCDD	74.2	40 - 135	
1,2,3,4,7,8-HxCDD	780				ļ.	13C-1,2,3,4,7,8	R-HxCDD	95.1	40 - 135	
1,2,3,6,7,8-HxCDD	2580					13C-1,2,3,6,7,8	3-HxCDD	105	40 - 135	
1,2,3,7,8,9-HxCDD	1370			٠.,		13C-1,2,3,7,8,9		90.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	105000			D,E,	1	13C-1,2,3,4,6,7		74.4	40 - 135	D
OCDD	471000			D,E ゴ	†	13C-OCDD	În andre	163	40 - 135	D,I,H
2,3,7,8-TCDF	12.8					13C-2,3,7,8-TC	CDF	83.7	40 - 135	۵,,,,,
1,2,3,7,8-PeCDF	68.1					13C-1,2,3,7,8-I	PeCDF	68.5	40 - 135	
2,3,4,7,8-PeCDF	531					13C-2,3,4,7,8-F	PeCDF	74.2	40 - 135	
1,2,3,4,7,8-HxCDF	1820					13C-1,2,3,4,7,8	-HxCDF	103	40 - 135	
1,2,3,6,7,8-HxCDF	545					13C-1,2,3,6,7,8	-HxCDF	98.7	40 - 135	
2,3,4,6,7,8-HxCDF	920					13C-2,3,4,6,7,8	-HxCDF	89.5	40 - 135	
1,2,3,7,8,9-HxCDF	322					13C-1,2,3,7,8,9		87.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	23700			E 5	<u> </u>	13C-1,2,3,4,6,7		117	40 - 135	
1,2,3,4,7,8,9-HpCDF	1770					13C-1,2,3,4,7,8	•	73.5	40 - 135	
OCDF	98200			E ゴ	İ	13C-OCDF		134	40 - 135	
					<u>CRS</u>	37CI-2,3,7,8-T0	CDD	91.4	40 - 135	
Totals							uotient (TEQ) Da	ata e		
Total TCDD	196		216		TEC) (Min):	2750			
Total PeCDD	1480									
Total HxCDD	21900				a. Sar	nple specific estimat	ed detection limit.			
Total HpCDD	223000			7			ssible concentration.			
Total TCDF	276		282		l	thod detection limit.				
Total PeCDF	4140				l	wer control limit - up	oper control limit.			
Total HxCDF	33900			X	i		Vorld Health Organization	on Toxic E	mivalent Factors (WHO)
Total HpCDF	150000			7			dry weight. The sample			

Approved By:

Sample ID: A3-23	(0-6")							EPA N	Aethod 829
Client Data Name: Arca	dis		Sample Data Matrix:	0 1	Laboratory Data		D . D	. ,	<u>: ,</u>
	er-Carbondale, IL		1	Sediment	Lab Sample:	32550-017	Date Re		2-Apr-10
	far-10		Sample Size:	9.07 g	QC Batch No.:	2951	Date Ex		16-Apr-1
Time Collected: 1125			%Solids:	55.3	Date Analyzed DB-5:	18-Apr-10	Dates A	nalyzed DB-225:	20-Apr-1
Analyte	Conc. (pg/g)	DL a	EMPC _p	Qualifiers	Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	4.98				<u>IS</u> 13C-2,3,7,8-TCI	DD	88.1	40 - 135	
1,2,3,7,8-PeCDD	57.6				13C-1,2,3,7,8-Pe	CDD	73.5	40 - 135	
1,2,3,4,7,8-HxCDD	165				13C-1,2,3,4,7,8-1	HxCDD	92.1	40 - 135	
1,2,3,6,7,8-HxCDD	536				13C-1,2,3,6,7,8-1	HxCDD	97.4	40 - 135	
1,2,3,7,8,9-HxCDD	258				13C-1,2,3,7,8,9-1	HxCDD	90.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	17200			E 🎜	13C-1,2,3,4,6,7,8	3-HpCDD	117	40 - 135	
OCDD	137000			D,E 🎜	13C-OCDD		118	40 - 135	D
2,3,7,8-TCDF	13.1				13C-2,3,7,8-TCI)F	83.5	40 - 135	
1,2,3,7,8-PeCDF	56.0				13C-1,2,3,7,8-Pe	CDF	72.2	40 - 135	
2,3,4,7,8-PeCDF	514				13C-2,3,4,7,8-Pe	CDF	75.4	40 - 135	
1,2,3,4,7,8-HxCDF	1020				13C-1,2,3,4,7,8-I	HxCDF	104	40 - 135	
1,2,3,6,7,8-HxCDF	227				13C-1,2,3,6,7,8-I	HxCDF	104	40 - 135	
2,3,4,6,7,8-HxCDF	365				13C-2,3,4,6,7,8-I	HxCDF	85.5	40 - 135	
1,2,3,7,8,9-HxCDF	260				13C-1,2,3,7,8,9-I	HxCDF	82.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	4510			E	13C-1,2,3,4,6,7,8	-HpCDF	88.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	460				13C-1,2,3,4,7,8,9	-HpCDF	71.9	40 - 135	
OCDF	18900			EJ	13C-OCDF		104	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCl	DD	84.0	40 - 135	
Totals					Toxic Equivalent Qu	otient (TEQ) D	ata e		
Total TCDD	65.7		79.4		TEQ (Min): 7	71		······································	
Total PeCDD	566								
Total HxCDD	6310			_=	a. Sample specific estimated	detection limit.			
Total HpCDD	44700			ゴ	b. Estimated maximum poss	ible concentration.			
Total TCDF	194		201		c. Method detection limit.				
Total PeCDF	2610				d. Lower control limit - upp	er control limit.			
Total HxCDF	10300				e. TEQ based on (2005) Wo		ion Toxic E	quivalent Factors.(WHO)
Total HpCDF	31600			I	The results are reported in d	_		•	•

Approved By:

Sample ID: A3-24	(0-6")		•					EPA I	Method 82
	zer-Carbondale, IL Mar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 9.14 g 54.9	QC Batch No.:	32550-020 2951 18-Apr-10	Date Re Date Ex	ceived:	2-Apr-10 16-Apr-1 20-Apr-1
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	•	%R	LCL-UCL ^d	•
2,3,7,8-TCDD	37.5				<u>IS</u> 13C-2,3,7,8-TCDD		84,6	40 - 135	-
1,2,3,7,8-PeCDD	429				13C-1,2,3,7,8-PeCI	DD	67.6	40 - 135	
1,2,3,4,7,8-HxCDD	1160				13C-1,2,3,4,7,8-Hx		85.8	40 - 135	
1,2,3,6,7,8-HxCDD	3880				13C-1,2,3,6,7,8-Hx		92.2	40 - 135	
1,2,3,7,8,9-HxCDD	2050				13C-1,2,3,7,8,9-Hx		84.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	117000		•	D,E J			73.3	40 - 135	D
OCDD	524000			D,E 5			103	40 - 135	D
2,3,7,8-TCDF	61.5			ري. د	13C-2,3,7,8-TCDF		78.7	40 - 135	D
1,2,3,7,8-PeCDF	302				13C-1,2,3,7,8-PeCL	F	68.4	40 - 135	
2,3,4,7,8-PeCDF	2970				13C-2,3,4,7,8-PeCD		68.6	40 - 135	
1,2,3,4,7,8-HxCDF	7740			E J	13C-1,2,3,4,7,8-Hx(116	40 - 135	
1,2,3,6,7,8-HxCDF	1730				13C-1,2,3,6,7,8-Hx(103	40 - 135	
2,3,4,6,7,8-HxCDF	2320				13C-2,3,4,6,7,8-Hx(80.7	40 - 135	
1,2,3,7,8,9-HxCDF	1650				13C-1,2,3,7,8,9-Hx(75.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	26800			E J	13C-1,2,3,4,6,7,8-H		101	40 - 135	
1,2,3,4,7,8,9-HpCDF	2710				13C-1,2,3,4,7,8,9-H		65.2	40 - 135	
OCDF	100000			E J	13C-OCDF		96.5	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDD		84.5	40 - 135	
Totals			P. V		Toxic Equivalent Quotie	ent (TEQ) Dat		10 133	
Total TCDD	311		318		TEQ (Min): 5080	` "			
Total PeCDD	2080		" •-		~~ \ (!!!!!). 5000				
Total HxCDD	28100				a. Sample specific estimated det	ection limit			
Total HpCDD	241000			丁	b. Estimated maximum possible				
Total TCDF	760		769	P J	c. Method detection limit.	consentiation.			200
Total PeCDF	16300			P 5	d. Lower control limit - upper co	ntrol limit			
Total HxCDF	62200			. I	e. TEQ based on (2005) World I		Tovio E-	wirmlant Easts C	WITO)
Total HpCDF	161000			7	The results are reported in dry w				

Approved By:

Client Data			1						Method 829
Name: Arca	dis		Sample Data		Laboratory Data				
	er-Carbondale, IL		Matrix:	Sediment	Lab Sample:	32551-018		eceived:	2-Apr-10
	far-10		Sample Size:	7.89 g	QC Batch No.:	2954		ctracted:	18-Apr-10
Time Collected: 1050			%Solids:	63.5	Date Analyzed DB-5:	20-Apr-10	Date At	nalyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	ard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	0.651			J	<u>IS</u> 13C-2,3,7,8-TCI	OD	89.6	40 - 135	
1,2,3,7,8-PeCDD	2.07			J	13C-1,2,3,7,8-Pe	eCDD	80.8	40 - 135	
1,2,3,4,7,8-HxCDD	3.32			J	13C-1,2,3,4,7,8-	HxCDD	92.5	40 - 135	
1,2,3,6,7,8-HxCDD	6.92				13C-1,2,3,6,7,8-	HxCDD	95.4	40 - 135	
1,2,3,7,8,9-HxCDD	6.70				13C-1,2,3,7,8,9-	HxCDD	90.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	248				13C-1,2,3,4,6,7,	8-HpCDD	79.4	40 - 135	
OCDD	10600			EJ	13C-OCDD	4 11 4 4 	91.6	40 - 135	
2,3,7,8-TCDF	0.756			J	13C-2,3,7,8-TCI	OF	87.4	40 - 135	
1,2,3,7,8-PeCDF	0.583			J	13C-1,2,3,7,8-Pe	CDF	80.1	40 - 135	
2,3,4,7,8-PeCDF	3.39			J	13C-2,3,4,7,8-Pe	:CDF	83.7	40 - 135	
1,2,3,4,7,8-HxCDF	2.01			J	13C-1,2,3,4,7,8-	HxCDF	89.0	40 - 135	
1,2,3,6,7,8-HxCDF	1.74			Ј	13C-1,2,3,6,7,8-	HxCDF	91.3	40 - 135	
2,3,4,6,7,8-HxCDF	2.51			J	13C-2,3,4,6,7,8-	HxCDF	87.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.15			13C-1,2,3,7,8,9-1	HxCDF	86.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	23.7				13C-1,2,3,4,6,7,8	B-HpCDF	76.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	2.37			J	13C-1,2,3,4,7,8,9	-HpCDF	75.1	40 - 135	
OCDF	76.4				13C-OCDF		76.4	40 - 135	
					CRS 37Cl-2,3,7,8-TC	DD	87.4	40 - 135	
Totals					Toxic Equivalent Qu	otient (TEQ) Da	ıta e		
Total TCDD	6.03		8.65		TEQ (Min): 1	2.1	1 5		
Total PeCDD	14.4		18.6		- , , ,				
Total HxCDD	79.5				a. Sample specific estimated	detection limit.			
Total HpCDD	567				b. Estimated maximum poss				
Total TCDF	14.5		16.4		c. Method detection limit.				
Total PeCDF	28.8		29.4		d. Lower control limit - upp	er control limit.			
Total HxCDF	47.7		48.2		e. TEQ based on (2005) Wo		on Toxic E	guivalent Factors (WHO)
Total HpCDF	95.9				The results are reported in d				The second secon

Approved By:

Sample ID: A4-2 (0-6	;")				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		EPA N	Tethod 8290
Client Data Name: Arcadis Project: Beazer- Date Collected: 31-Mar- Time Collected: 1055	Carbondale, IL	Sample Data Matrix: Sample Size: %Solids:	Sediment 7.74 g 64.8	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-019 2954 20-Apr-10	Date Re Date Ex Date Ar		2-Apr-10 18-Apr-10 NA
Analyte Con	nc. (pg/g) DL a	EMPC ^b	Qualifiers	Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD N	ND .	0.457	UX	<u>IS</u> 13C-2,3,7,8-TCD	DD	91.1	40 - 135	
1,2,3,7,8-PeCDD N	ND	1.44	υ×	13C-1,2,3,7,8-Pe	CDD	107	40 - 135	
1,2,3,4,7,8-HxCDD 4	1.17		J	13C-1,2,3,4,7,8-I	HxCDD	89.7	40 - 135	
1,2,3,6,7,8-HxCDD 1	0.2			13C-1,2,3,6,7,8-I	HxCDD	89.0	40 - 135	
1,2,3,7,8,9-HxCDD 7	7.02			13C-1,2,3,7,8,9-I	HxCDD	88.2	40 - 135	
1,2,3,4,6,7,8-HpCDD 3	52			13C-1,2,3,4,6,7,8	3-HpCDD	81.1	40 - 135	
OCDD 1	2100		EI	13C-OCDD		94.3	40 - 135	
2,3,7,8-TCDF	ND	0.624	υX	13C-2,3,7,8-TCD)F	88.4	40 - 135	
1,2,3,7,8-PeCDF 0	0.631		J	13C-1,2,3,7,8-Pe	CDF	107	40 - 135	
2,3,4,7,8-PeCDF 5	1.76			13C-2,3,4,7,8-Pe	CDF	113	40 - 135	
1,2,3,4,7,8-HxCDF 3	.26		Ĵ	13C-1,2,3,4,7,8-I	HxCDF	86.2	40 - 135	
1,2,3,6,7,8-HxCDF 1	.99		J	13C-1,2,3,6,7,8-F	HxCDF	88.1	40 - 135	
2,3,4,6,7,8-HxCDF 3	.86		J	13C-2,3,4,6,7,8-I	HxCDF	83.0	40 - 135	
1,2,3,7,8,9-HxCDF 0	.976		J	13C-1,2,3,7,8,9-F		81.4	40 - 135	
1,2,3,4,6,7,8-HpCDF 4	2.3			13C-1,2,3,4,6,7,8	-HpCDF	76.0	40 - 135	
1,2,3,4,7,8,9-HpCDF 3	.84		J	13C-1,2,3,4,7,8,9	•	75.4	40 - 135	
OCDF 1	86			13C-OCDF		76.8	40 - 135	
				CRS 37C1-2,3,7,8-TCI	DD	92.0	40 - 135	
Totals			TATE OF THE STATE	Toxic Equivalent Qu		ata e		
Total TCDD 7	7.34	7.80		TEQ (Min): 12	2.6		. :	
Total PeCDD 1	0.2	19.8						
Total HxCDD 9	06.6			a. Sample specific estimated	l detection limit.			
Total HpCDD 7	77			b. Estimated maximum poss	ible concentration.			
Total TCDF 1	2.1	14.1		c. Method detection limit.				
Total PeCDF 4	5.2	45.6		d. Lower control limit - upp	er control limit.			
Total HxCDF 8	0.9	81.7		e. TEQ based on (2005) Wo	rld Health Organizati	ion Toxic E	quivalent Factors.(WHO)
Total HpCDF 2	08			The results are reported in d			-	

Approved By:

Sample ID: A4-3 (0	-v ,							EPA N	Aethod 8290
Client Data Name: Arcac Project: Beaze Date Collected: 31-M Time Collected: 1100	er-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.46 g 67.2	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-020 2954 20-Apr-10	Date Re Date Ex Date An		2-Apr-10 18-Apr-10 NA
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standar	d	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.551			<u>IS</u> 13C-2,3,7,8-TCDD)	88.9	40 - 135	
1,2,3,7,8-PeCDD	ND		0.645	Uχ	13C-1,2,3,7,8-PeC	DD	77.3	40 - 135	
1,2,3,4,7,8-HxCDD	2.32			. J .	13C-1,2,3,4,7,8-Hx	CDD	91.2	40 - 135	
1,2,3,6,7,8-HxCDD	5.06				13C-1,2,3,6,7,8-Hx	CDD	86.8	40 - 135	
1,2,3,7,8,9-HxCDD	4.13			J	13C-1,2,3,7,8,9-Hx	CDD	87.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	209				13C-1,2,3,4,6,7,8-I	HpCDD	79.9	40 - 135	
OCDD	9210			EI	13C-OCDD		86.9	40 - 135	
2,3,7,8-TCDF	0.387			ј	13C-2,3,7,8-TCDF		84.7	40 - 135	
1,2,3,7,8-PeCDF	ND	0.581			13C-1,2,3,7,8-PeC	DF	82.2	40 - 135	
2,3,4,7,8-PeCDF	ND		1.01	UX	13C-2,3,4,7,8-PeC	DF	84.1	40 - 135	
1,2,3,4,7,8-HxCDF	1.29			J	13C-1,2,3,4,7,8-Hx	:CDF	90.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.540	UX	13C-1,2,3,6,7,8 - Hx	CDF	91.0	40 - 135	
2,3,4,6,7,8-HxCDF	0.993			J	13C-2,3,4,6,7,8-Hx	CDF	85.2	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.399			13C-1,2,3,7,8,9-Hx	CDF	83.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.6				13C-1,2,3,4,6,7,8-F	HpCDF	79.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.57			J	13C-1,2,3,4,7,8,9-F	HpCDF	75.7	40 - 135	
OCDF	87.6				13C-OCDF		75.4	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDI		85.8	40 - 135	
Totals					Toxic Equivalent Quot	ient (TEQ) Dat	a e		
Total TCDD	1.25		1.71		TEQ (Min): 6.51				
Total PeCDD	4.17		7.48						
Total HxCDD	46.2				a. Sample specific estimated de	etection limit.			
Total HpCDD	461				b. Estimated maximum possibl	e concentration.			
Total TCDF	1.40		2.21		c. Method detection limit.				
Total PeCDF	6.03		7.04		d. Lower control limit - upper of	control limit.			
Total HxCDF	22.7		23.2		e. TEQ based on (2005) World	Health Organization	Toxic Ec	uivalent Factors.(WHO)
Total HpCDF	83.1				The results are reported in dry			****	

Approved By:

Sample ID: A4-4 (0-6'	")					EPA N	Method 8290
Client Data Name: Arcadis Project: Beazer-C Date Collected: 31-Mar-	Carbondale, IL 10	Sample Data Matrix: Sample Size:	Sediment 9.19 g	QC Batch No.: 2954			2-Apr-10 18-Apr-10
Time Collected: 1020		%Solids:	54.7	Date Analyzed DB-5: 20-A	Apr-10 Dates A	nalyzed DB-225:	21-Apr-10
Analyte Con	nc. (pg/g) DL a	ЕМРС ^b	Qualifiers	Labeled Standard	%R	LCL-UCLd	Qualifiers
. , , .	.46			<u>IS</u> 13C-2,3,7,8-TCDD	89.4	40 - 135	
	.65		J	13C-1,2,3,7,8-PeCDD	82.3	40 - 135	
1,2,3,4,7,8-HxCDD 10	0.6			13C-1,2,3,4,7,8-HxCDD	86.9	40 - 135	
1,2,3,6,7,8-HxCDD 24	4.6			13C-1,2,3,6,7,8-HxCDD	92.5	40 - 135	
1,2,3,7,8,9-HxCDD 18	8.0			13C-1,2,3,7,8,9-HxCDD	89.5	40 - 135	
1,2,3,4,6,7,8-HpCDD 75	55			13C-1,2,3,4,6,7,8-HpCD	DD 81.1	40 - 135	
OCDD 15	5900		E 🌫	13C-OCDD	91.4	40 - 135	
2,3,7,8-TCDF 1.:	32		ŕ	13C-2,3,7,8-TCDF	87.4	40 - 135	
1,2,3,7,8-PeCDF 1.	16		J	13C-1,2,3,7,8-PeCDF	80.8	40 - 135	
2,3,4,7,8-PeCDF 9.	87			13C-2,3,4,7,8-PeCDF	85.1	40 - 135	
1,2,3,4,7,8-HxCDF 7.6	65			13C-1,2,3,4,7,8-HxCDF		40 - 135	
1,2,3,6,7,8-HxCDF 6.0	01			13C-1,2,3,6,7,8-HxCDF		40 - 135	
	71			13C-2,3,4,6,7,8-HxCDF		40 - 135	
	45		J	13C-1,2,3,7,8,9-HxCDF		40 - 135	
	32		, in the second	13C-1,2,3,4,6,7,8-HpCD		40 - 135	
•	0.4			13C-1,2,3,4,7,8,9-HpCD		40 - 135	
OCDF 47				13C-OCDF	73.6	40 - 135	
	•			<u>CRS</u> 37Cl-2,3,7,8-TCDD	85.1	40 - 135	
Totals				Toxic Equivalent Quotient (40 - 133	
Total TCDD 14	4.2	18.4		TEQ (Min): 31.0	(()		
	5.4						
Total HxCDD 22				a Sample specific estimated detection	n limit		
	520		**	b. Estimated maximum possible conce			
	1.0	43.0		c. Method detection limit.	Citiation.		
	5.8	96.6	PJ	d. Lower control limit - upper control	limit		
Total HxCDF 19		199	PA	e. TEQ based on (2005) World Health		onicalant Fact : :	MIIO)
Total HpCDF 51		1 2 2	r 🔼	**		5	
Total Tipe D1 31	. /			The results are reported in dry weight	. The sample size is rep	orted in wet weig	nt.

Approved By:

Sample ID: A4-5 (0-6'')							EPA N	Aethod 8290
	zer-Carbondale, IL Mar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.86 g 64.3	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-015 2954 20-Apr-10	Date Re Date Ex		2-Apr-10 18-Apr-10 21-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	lard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND		0.541	UX	<u>IS</u> 13C-2,3,7,8-TC	DD	89.9	40 - 135	
1,2,3,7,8-PeCDD	2.32			J	13C-1,2,3,7,8-P	eCDD	85.2	40 - 135	
1,2,3,4,7,8-HxCDD	3.44			J	13C-1,2,3,4,7,8	HxCDD	90.4	40 - 135	
1,2,3,6,7,8-HxCDD	7.68				13C-1,2,3,6,7,8	-HxCDD	93.6	40 - 135	
1,2,3,7,8,9-HxCDD	6.17				13C-1,2,3,7,8,9	-HxCDD	86.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	215				13C-1,2,3,4,6,7,		70.5	40 - 135	
OCDD	6340				13C-OCDD		75.5	40 - 135	
2,3,7,8-TCDF	2.65				13C-2,3,7,8-TC	DF	85.9	40 - 135	
1,2,3,7,8-PeCDF	1.57			J	13C-1,2,3,7,8-P		84.5	40 - 135	
2,3,4,7,8-PeCDF	63.5				13C-2,3,4,7,8-P		86.4	40 - 135	
1,2,3,4,7,8-HxCDF	4.40			J	13C-1,2,3,4,7,8-		91.9	40 - 135	
1,2,3,6,7,8-HxCDF	6.75				13C-1,2,3,6,7,8-		90.2	40 - 135	
2,3,4,6,7,8-HxCDF	19.5				13C-2,3,4,6,7,8-		85.4	40 - 135	
1,2,3,7,8,9-HxCDF	2.89			J	13C-1,2,3,7,8,9-		80.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	25.5			The second second	13C-1,2,3,4,6,7,		69.1	40 - 135	
1,2,3,4,7,8,9-HpCDF	2.05			J	13C-1,2,3,4,7,8,	•	68.1	40 - 135	
OCDF	57.4				13C-OCDF	in the second	64.3	40 - 135	
					CRS 37C1-2,3,7,8-TC	DD	87.2	40 - 135	
Totals			400		Toxic Equivalent Q				V2814
Total TCDD	17.6		20.2		TEQ (Min): 3	1.1	an and the same		
Total PeCDD	37.5								
Total HxCDD	119				a. Sample specific estimate	d detection limit.			
Total HpCDD	527			·	b. Estimated maximum pos				
Total TCDF	144		147		c. Method detection limit.	***			
Total PeCDF	478			P	d. Lower control limit - upp	per control limit			
Total HxCDF	255				e. TEQ based on (2005) We		on Toyic Ec	mivalent Factors (NHO)
Total HpCDF	85.3				The results are reported in a				

Approved By:

Sample ID: A4-6 (0-6")							EPA I	Method 829
Client Data			Sample Data		Laboratory Data				· · · · · · · · · · · · · · · · · · ·
Name: Arca	dis er-Carbondale, IL		Matrix:	Sediment	Lab Sample:	32551-016	Date Re	eceived:	2-Apr-10
	er-Carbondale, IL Mar-10		Sample Size:	9.35 g	QC Batch No.:	2954	Date Ex	tracted:	18-Apr-10
Time Collected: 1015			%Solids:	53.6	Date Analyzed DB-5:	20-Apr-10	Dates A	nalyzed DB-225;	21-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	1.73				<u>IS</u> 13C-2,3,7,8-TCD	D	95.5	40 - 135	
1,2,3,7,8-PeCDD	7.24				13C-1,2,3,7,8-Pet	CDD	83.7	40 - 135	
1,2,3,4,7,8-HxCDD	15.5				13C-1,2,3,4,7,8-F	IxCDD	92.6	40 - 135	
1,2,3,6,7,8-HxCDD	39.4				13C-1,2,3,6,7,8-F	IxCDD	93.3	40 - 135	
1,2,3,7,8,9-HxCDD	25.3				13C-1,2,3,7,8,9-H	IxCDD	90.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	1350				13C-1,2,3,4,6,7,8	-HpCDD	88.9	40 - 135	
OCDD	21100			E	13C-OCDD		134	40 - 135	
2,3,7,8-TCDF	2.36				13C-2,3,7,8-TCD	F	87.9	40 - 135	
1,2,3,7,8-PeCDF	2.39			J	13C-1,2,3,7,8-Pe0	CDF	85.1	40 - 135	
2,3,4,7,8-PeCDF	12.9				13C-2,3,4,7,8-Pe0	CDF	85.7	40 - 135	
1,2,3,4,7,8-HxCDF	12.3				13C-1,2,3,4,7,8-H		89.3	40 - 135	
1,2,3,6,7,8-HxCDF	8.14				13C-1,2,3,6,7,8-H	IxCDF	91.4	40 - 135	
2,3,4,6,7,8-HxCDF	13.8				13C-2,3,4,6,7,8-H	IxCDF	86.1	40 - 135	
1,2,3,7,8,9-HxCDF	3.62			J	13C-1,2,3,7,8,9-F	IxCDF	83.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	204				13C-1,2,3,4,6,7,8	-HpCDF	79.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	15.8				13C-1,2,3,4,7,8,9	-HpCDF	82.3	40 - 135	
OCDF	759				13C-OCDF		100	40 - 135	
					CRS 37CI-2,3,7,8-TCE	DD	93.6	40 - 135	
Totals					Toxic Equivalent Que		ata e	***************************************	
Total TCDD	26.2		27.1		TEQ (Min): 47	.2			
Total PeCDD	76.7			•					
Total HxCDD	548			and the second	a. Sample specific estimated	detection limit.			
Total HpCDD	4850				b. Estimated maximum possi				
Total TCDF	62.9		67.6	PJ	c. Method detection limit.			S	
Total PeCDF	123		125	PJ	d. Lower control limit - uppe	r control limit.			
Total HxCDF	311			PI	e. TEQ based on (2005) Wor		on Toxic F	uivalent Factors (WHO)
Total HpCDF	867				The results are reported in dr				

Approved By:

Client Data	man and a second a	Sample Data		Laboratory Data		·		Method 8290
Name: Arcadis		Matrix:	Sediment	Lab Sample:	32551-007	Date Re	eceived:	2-Apr-10
Project: Beazer-Carbonda Date Collected: 31-Mar-10	ale, IL	Sample Size:	7.85 g	QC Batch No.:	2954		rtracted:	18-Apr-10
Time Collected: 0830		%Solids:	63.8	Date Analyzed DB-5:	20-Apr-10		nalyzed DB-225:	NA
Analyte Conc. (pg/	g) DL ^a	EMPC ^b	Qualifiers	Labeled Stand	•	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD ND	0.247			<u>IS</u> 13C-2,3,7,8-TC	DD	87.6	40 - 135	
1,2,3,7,8-PeCDD 0.623			J	13C-1,2,3,7,8-P	eCDD	84.3	40 - 135	
1,2,3,4,7,8-HxCDD 1.43			J	13C-1,2,3,4,7,8	-HxCDD	89.8		
1,2,3,6,7,8-HxCDD 2.87			J	13C-1,2,3,6,7,8		87.8	40 - 135	
1,2,3,7,8,9-HxCDD 2.53			J	13C-1,2,3,7,8,9	-HxCDD	85.0	40 - 135	
1,2,3,4,6,7,8-HpCDD 106				13C-1,2,3,4,6,7,	8-HpCDD	79.2	40 - 135	
OCDD 5030				13C-OCDD	Marija, Linux III.	102	40 - 135	
2,3,7,8-TCDF ND	0.271			13C-2,3,7,8-TC	DF	86.5	40 - 135	
1,2,3,7,8-PeCDF ND	0.660			13C-1,2,3,7,8-P	eCDF	88.8	40 - 135	
2,3,4,7,8-PeCDF 0.971			Ј	13C-2,3,4,7,8-P	eCDF	92.8	40 - 135	
1,2,3,4,7,8-HxCDF 0.767	al a		J	13C-1,2,3,4,7,8-	HxCDF	87.7	40 - 135	
1,2,3,6,7,8-HxCDF 0.579			J	13C-1,2,3,6,7,8-	HxCDF	89.0	40 - 135	
2,3,4,6,7,8-HxCDF 0.912			J	13C-2,3,4,6,7,8-	HxCDF	85.0	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.546			13C-1,2,3,7,8,9-	HxCDF	81.5	40 - 135	
1,2,3,4,6,7,8-HpCDF 11.8				13C-1,2,3,4,6,7,	8-HpCDF	75.0	40 - 135	
1,2,3,4,7,8,9-HpCDF 1.22			J	13C-1,2,3,4,7,8,	9-HpCDF	76.1	40 - 135	
OCDF 42.1				13C-OCDF		88.4	40 - 135	
				CRS 37Cl-2,3,7,8-TC	DD	88.8	40 - 135	
Totals				Toxic Equivalent Q	uotient (TEQ) Da	ata e		
Total TCDD ND	0.713			TEQ (Min):	1.54			
Total PeCDD 4.03		4.93						
Total HxCDD 34.8				a Sample specific estimate	d detection limit.			
Total HpCDD 244				b. Estimated maximum pos	sible concentration			
Total TCDF 2.25				c. Method detection limit.			t factor	
Total PeCDF 7.30		7.82		d. Lower control limit - upp	per control limit.			
Total HxCDF 17.1		17.3		e. TEQ based on (2005) W	orld Health Organizati	on Toxic E	quivalent Factors.(WHO)
Total HpCDF 44.4				The results are reported in				

Approved By:

Sample ID: A4-8 (0-6'')							EPA N	Method 829
Project: Beaz Date Collected: 31-N	CADIS zer-Carbondale, IL Mar-10		Sample Data Matrix: Sample Size:	Soil 7.51 g	Laboratory Data Lab Sample: QC Batch No.:	32551-008 2956	Date Re	tracted:	2-Apr-10 19-Apr-10
Time Collected: 0835			%Solids:	66.9	Date Analyzed DB-5:	21-Apr-10		nalyzed DB-225:	21-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	ard	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD	0.716			$\mathbf{J}_{_{\!$	<u>IS</u> 13C-2,3,7,8-TCI	DD .	89.4	40 - 135	
1,2,3,7,8-PeCDD	3.48			J	13C-1,2,3,7,8-Pe	eCDD _	77.7	40 - 135	
1,2,3,4,7,8-HxCDD	7.66				13C-1,2,3,4,7,8-	HxCDD	88.6	40 - 135	
1,2,3,6,7,8-HxCDD	16.0				13C-1,2,3,6,7,8-	HxCDD	94.0	40 - 135	
1,2,3,7,8,9-HxCDD	13.1				13C-1,2,3,7,8,9-	HxCDD	91.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	474				13C-1,2,3,4,6,7,	8-HpCDD	80.7	40 - 135	
OCDD	8690			ЕJ	13C-OCDD		100	40 - 135	
2,3,7,8-TCDF	0.820			J	13C-2,3,7,8-TCI	OF	87.5	40 - 135	
1,2,3,7,8-PeCDF	0.528			J	13C-1,2,3,7,8-Pe	CDF	82.4	40 - 135	
2,3,4,7,8-PeCDF	5.98				13C-2,3,4,7,8-Pe	CDF	80.2	40 - 135	
1,2,3,4,7,8-HxCDF	5.21				13C-1,2,3,4,7,8-	HxCDF	88.1	40 - 135	
1,2,3,6,7,8-HxCDF	3.48			J	13C-1,2,3,6,7,8-	HxCDF	92.4	40 - 135	
2,3,4,6,7,8-HxCDF	6.04				13C-2,3,4,6,7,8-	HxCDF	86.7	40 - 135	
1,2,3,7,8,9-HxCDF	1.37			J	13C-1,2,3,7,8,9-1	HxCDF	87.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	82.4				13C-1,2,3,4,6,7,8	B-HpCDF	79.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	5.79				13C-1,2,3,4,7,8,9	9-HpCDF	76.9	40 - 135	
OCDF	280				13C-OCDF	· •	87.2	40 - 135	
					CRS 37Cl-2,3,7,8-TC	DD	84.0	40 - 135	
Totals					Toxic Equivalent Qu	otient (TEQ) D	ata e	· · · · · · · · · · · · · · · · · · ·	
Total TCDD	5.24		6.11		TEQ (Min): 1	9.7	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Total PeCDD	30.0								
Total HxCDD	154				a. Sample specific estimated	d detection limit.			
Total HpCDD	1030				b. Estimated maximum poss				
Total TCDF	22.0		23.3		c. Method detection limit.				
Total PeCDF	54.9		55.5		d. Lower control limit - upp	er control limit.			
Total HxCDF	115				e. TEQ based on (2005) Wo		ion Toxic E	mivalent Factors (WHO)
Total HpCDF	290				The results are reported in d	· - ·			•

Approved By:

Sample ID: FIELD DU	PLICATE #6						EPA N	Method 8290
Name: Arcadis Project: Beazer-Ca Date Collected: 31-Mar-10 Time Collected: NA	arbondale, IL)	Sample Data Matrix: Sample Size: %Solids:	Soil 7.31 g 69.0	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-009 2956 21-Apr-10	Date Re Date Ex Date Ar		2-Apr-10 19-Apr-10 NA
Analyte Conc	. (pg/g) DL a	EMPC ^b	Qualifiers	Labeled Sta	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 0.63	35		J	<u>IS</u> 13C-2,3,7,8-T	CDD	93.3	40 - 135	
1,2,3,7,8-PeCDD 3.4	1		J	13C-1,2,3,7,8	-PeCDD	81.4	40 - 135	
1,2,3,4,7,8-HxCDD 7.0	51. 41.			13C-1,2,3,4,7	,8-HxCDD	90.5	40 - 135	
1,2,3,6,7,8-HxCDD 13.	7			13C-1,2,3,6,7	,8-HxCDD	95.4	40 - 135	
1,2,3,7,8,9-HxCDD 11.4	4			13C-1,2,3,7,8	,9-HxCDD	89.1	40 - 135	
1,2,3,4,6,7,8-HpCDD 431				13C-1,2,3,4,6	•	83.9	40 - 135	
OCDD 857	0		EJ	13C-OCDD		89.1	40 - 135	
2,3,7,8-TCDF 0.8°	73		J	13C-2,3,7,8-T	CDF	87.9	40 - 135	
1,2,3,7,8-PeCDF 0.69	91		J	13C-1,2,3,7,8		81.2		
2,3,4,7,8-PeCDF 5.19	9			13C-2,3,4,7,8		82.9	40 - 135	
1,2,3,4,7,8-HxCDF 4.28	8		J .	13C-1,2,3,4,7	and the second of the second o	91.1		
1,2,3,6,7,8-HxCDF 3.1	1		J	13C-1,2,3,6,7	•	93.1	40 - 135	
2,3,4,6,7,8-HxCDF 4.98	8		- 	13C-2,3,4,6,7	in the second	87.6		
1,2,3,7,8,9-HxCDF 1.26	5		J	13C-1,2,3,7,8		89.4		
1,2,3,4,6,7,8-HpCDF 75.1	1			13C-1,2,3,4,6		81.7	40 - 135	
1,2,3,4,7,8,9-HpCDF 6.03	3			13C-1,2,3,4,7	•	77.8	40 - 135	
OCDF 246	I			13C-OCDF		78.2	40 - 135	
				CRS 37Cl-2,3,7,8-	ГСDD	88.1	40 - 135	
Totals					Quotient (TEQ) Da		10 155	
Total TCDD 5.94	1	8.34		TEQ (Min):	18.1			
Total PeCDD 25.2	2	29.0			- -			
Total HxCDD 149				a. Sample specific estim	ated detection limit			
Total HpCDD 965				b. Estimated maximum		•		
Total TCDF 15.2	2	18.5		c. Method detection lim				
Total PeCDF 51.4	4	52.0		d. Lower control limit -				
Total HxCDF 104					World Health Organization	on Toxic F	quivalent Factors (WHO
Total HpCDF 264				The results are reported				

Approved By:

Sample ID: A4-9 (0-6'')						EPA I	Method 8290
Project: Bea	adis zer-Carbondale, IL Mar-10 0		Sample Data Matrix: Sample Size: %Solids:	Soil 8.09 g 62.0	Laboratory Data Lab Sample: 32551-010 QC Batch No.: 2956 Date Analyzed DB-5: 21-Apr-10	Date Ex	eceived: stracted: nalyzed DB-225;	2-Apr-10 19-Apr-10 NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.245			J	<u>IS</u> 13C-2,3,7,8-TCDD	93.5	40 - 135	
1,2,3,7,8-PeCDD	ND	0.620			13C-1,2,3,7,8-PeCDD	97.8	40 - 135	
1,2,3,4,7,8-HxCDD	ND		1.45	ÚΧ	13C-1,2,3,4,7,8-HxCDD	95.8	40 - 135	
1,2,3,6,7,8-HxCDD	1.67			J	13C-1,2,3,6,7,8-HxCDD	97.7	40 - 135	
1,2,3,7,8,9 - HxCDD	1.82			J	13C-1,2,3,7,8,9-HxCDD	94.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	59.6				13C-1,2,3,4,6,7,8-HpCDD	87.2	40 - 135	
OCDD	1570				13C-OCDD	85.5	40 - 135	
2,3,7,8-TCDF	ND	0.379			13C-2,3,7,8-TCDF	91.8	40 - 135	
1,2,3,7,8-PeCDF	ND	0.512			13C-1,2,3,7,8-PeCDF	106	40 - 135	
2,3,4,7,8-PeCDF	ND	0.933			13C-2,3,4,7,8-PeCDF	105	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.413			13C-1,2,3,4,7,8-HxCDF	90.6	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.417			13C-1,2,3,6,7,8-HxCDF	92.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.484			13C-2,3,4,6,7,8-HxCDF	89.2	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.363			13C-1,2,3,7,8,9-HxCDF	91.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	2.54			J	13C-1,2,3,4,6,7,8-HpCDF	83.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.676			13C-1,2,3,4,7,8,9-HpCDF	82.1	40 - 135	
OCDF	7.21			J	13C-OCDF	76.7	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDD	89.5	40 - 135	
Totals				· · · · · · · · · · · · · · · · · · ·	Toxic Equivalent Quotient (TEQ) Da	ata e		
Total TCDD	0.493		0.897		TEQ (Min): 1.69			
Total PeCDD	3.36		4.05					
Total HxCDD	25.6		27.0		a. Sample specific estimated detection limit.			
Total HpCDD	148				b. Estimated maximum possible concentration.			
Total TCDF	ND .	0.379			c. Method detection limit.			
Total PeCDF	1.59				d. Lower control limit - upper control limit.			
Total HxCDF	2.07		3.30		e. TEQ based on (2005) World Health Organization	on Toxic E	quivalent Factors.(WHO)
Total HpCDF	2.54		7.23		The results are reported in dry weight. The sample		-	

Approved By:

Sample ID: A4-10 (0	-6")						EPA I	Method 8290
Client Data Name: Arcadi Project: Beazer Date Collected: 31-Ma Time Collected: 0845	r-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Sediment 6.90 g 72.4	Laboratory Data Lab Sample: 32551-011 QC Batch No.: 2954 Date Analyzed DB-5: 20-Apr-10	Date Ex		2-Apr-10 18-Apr-10 NA
Analyte Co	onc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.211			<u>IS</u> 13C-2,3,7,8-TCDD	87.0	40 - 135	
1,2,3,7,8-PeCDD	0.830			J	13C-1,2,3,7,8-PeCDD	81.0	40 - 135	
1,2,3,4,7,8-HxCDD	2.04			. J	13C-1,2,3,4,7,8-HxCDD	85.7	40 - 135	
1,2,3,6,7,8-HxCDD	2.22			J	13C-1,2,3,6,7,8-HxCDD	90.1	40 - 135	
1,2,3,7,8,9-HxCDD	2.27			J	13C-1,2,3,7,8,9-HxCDD	85.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	84.0				13C-1,2,3,4,6,7,8-HpCDD	72.7	40 - 135	
OCDD	3260				13C-OCDD	70.2	40 - 135	
2,3,7,8-TCDF	ND	0.349			13C-2,3,7,8-TCDF	79.9	40 - 135	
1,2,3,7,8-PeCDF	ND	0.404			13C-1,2,3,7,8-PeCDF	81.4	40 - 135	
2,3,4,7,8-PeCDF	ND	0.403			13C-2,3,4,7,8-PeCDF	82.9	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.325			13C-1,2,3,4,7,8-HxCDF	87.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.320			13C-1,2,3,6,7,8-HxCDF	88.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.407			13C-2,3,4,6,7,8-HxCDF	81.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.539			13C-1,2,3,7,8,9-HxCDF	77.8	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.582			13C-1,2,3,4,6,7,8-HpCDF	70.4	40 - 135	
•	ND	0.429			13C-1,2,3,4,7,8,9-HpCDF	67.3	40 - 135	
OCDF	ND		1.42	υ×	13C-OCDF	62.5	40 - 135	
				• ,	<u>CRS</u> 37Cl-2,3,7,8-TCDD	84.1	40 - 135	
Totals					Toxic Equivalent Quotient (TEQ)		40 - 133	
Total TCDD	ND		0.336	υX	TEQ (Min): 3.30			
	6.56		7.04	U /\	in the state of th			
	41.7				a. Sample specific estimated detection limit.			
	229			''	b. Estimated maximum possible concentration			
and the second of the second o	ND age and		0.390	VΧ	c. Method detection limit.	n. The g		
	ND	0.404	0.570	V / C	d. Lower control limit - upper control limit.			
	0.391	5.101	0.726		• •	imatina Maria	untimed are se	,,,,,,,
	ND		1.03	UΧ	e. TEQ based on (2005) World Health Organi			
	—		1.03	<u> </u>	The results are reported in dry weight. The sa	mple size is rep	orted in wet weigh	nt.

Approved By:

Sample ID: A5-6 (0-6")							EPA N	Aethod 8290
Client Data		Sample Data		Laboratory Data				
Name: ARCADIS		Matrix:	Sediment	Lab Sample:	32549-013	Date Re	ceived:	2-Apr-10
Project: Beazer-Ca Date Collected: 30-Mar-10	rbondale, IL	Sample Size:	9.24 g	QC Batch No.:	2956	Date Ex	tracted:	19-Apr-10
Time Collected: 0815		%Solids:	54.3	Date Analyzed DB-5:	21-Apr-10	Dates A	nalyzed DB-225:	21-Apr-10
Analyte Conc.	(pg/g) DL a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD 3.99)			<u>IS</u> 13C-2,3,7,8-TCD	D	91.8	40 - 135	
1,2,3,7,8-PeCDD 32.5	5			13C-1,2,3,7,8-Pe0	CDD	81.4	40 - 135	
1,2,3,4,7,8-HxCDD 81.2	2		-	13C-1,2,3,4,7,8-H	IxCDD	88.0	40 - 135	
1,2,3,6,7,8-HxCDD 277				13C-1,2,3,6,7,8-H	IxCDD	92.0	40 - 135	
1,2,3,7,8,9-HxCDD 123				13C-1,2,3,7,8,9-F	IxCDD	87.8	40 - 135	
1,2,3,4,6,7,8-HpCDD 990	0		E 🎜	13C-1,2,3,4,6,7,8	-HpCDD	90.4	40 - 135	
OCDD 949	00		EJ	13C-OCDD		162	40 - 135	
2,3,7,8-TCDF 1.55	j			13C-2,3,7,8-TCD	F	89.4	40 - 135	
1,2,3,7,8-PeCDF 6.21	en de la companya de La companya de la co			13C-1,2,3,7,8-Pe0	CDF	82.4	40 - 135	
2,3,4,7,8-PeCDF 35.5				13C-2,3,4,7,8-Pe(85.0	40 - 135	
1,2,3,4,7,8-HxCDF 76.3	i [']			13C-1,2,3,4,7,8-H		92.7	40 - 135	
1,2,3,6,7,8-HxCDF 24.6				13C-1,2,3,6,7,8-H		91.5	40 - 135	
2,3,4,6,7,8-HxCDF 61.5				13C-2,3,4,6,7,8-H	IxCDF	85.8	40 - 135	
1,2,3,7,8,9-HxCDF 22.4	}			13C-1,2,3,7,8,9-H	(xCDF	84.6	40 - 135	
1,2,3,4,6,7,8-HpCDF 1380	0			13C-1,2,3,4,6,7,8-	HpCDF	80.7	40 - 135	
1,2,3,4,7,8,9-HpCDF 118				13C-1,2,3,4,7,8,9-	HpCDF	76.3	40 - 135	
OCDF 7430	0			13C-OCDF		117	40 - 135	
				CRS 37Cl-2,3,7,8-TCD	D	85.4	40 - 135	
Totals				Toxic Equivalent Que		oata e		
Total TCDD 64.2				TEQ (Min): 25	9		: 11	
Total PeCDD 325								
Total HxCDD 2910)			a. Sample specific estimated	detection limit.			
Total HpCDD 2550	00		ゴ	b. Estimated maximum possi				
Total TCDF 41.0	 	45.6	PJ	c. Method detection limit.				
Total PeCDF 304		305	PJ	d. Lower control limit - uppe.	r control limit.			
Total HxCDF 2290)		_	e. TEQ based on (2005) Wor		tion Toxic Ed	quivalent Factors.(WHO)
Total HpCDF 8560)			The results are reported in dr				

Approved By:

Sample ID: FIELD	DUPLICATE #2		See London					EPA N	Aethod 8290
Project: Beaze	ADIS er-Carbondale, IL ar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 10.3 g 48.5	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32549-014 2956 21-Apr-10	Date Re Date Ex Dates A		2-Apr-10 19-Apr-10 21-Apr-10
Analyte C	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	4.34		*.	:	<u>IS</u> 13C-2,3,7,8-TCI	DD	92.0	40 - 135	
1,2,3,7,8-PeCDD	44.3				13C-1,2,3,7,8-Pe	eCDD	89.2	40 - 135	
1,2,3,4,7,8-HxCDD	121		÷		13C-1,2,3,4,7,8-	HxCDD	93.1	40 - 135	
1,2,3,6,7,8-HxCDD	405				13C-1,2,3,6,7,8-	HxCDD	99.4	40 - 135	
1,2,3,7,8,9-HxCDD	190				13C-1,2,3,7,8,9-	HxCDD	96.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	15000			E 5	13C-1,2,3,4,6,7,	8-HpCDD	116	40 - 135	
OCDD	167000			D,E 🎜	13C-OCDD		139	40 - 135	D
2,3,7,8-TCDF	1.88				13C-2,3,7,8-TCI	DF	86.5	40 - 135	
1,2,3,7,8-PeCDF	7.19				13C-1,2,3,7,8-Pe	eCDF	93.3	40 - 135	
2,3,4,7,8-PeCDF	41.6				13C-2,3,4,7,8-Pe	eCDF	95.9	40 - 135	
1,2,3,4,7,8-HxCDF	105				13C-1,2,3,4,7,8-	HxCDF	93.4	40 - 135	
1,2,3,6,7,8-HxCDF	36.1				13C-1,2,3,6,7,8-	HxCDF	93.8	40 - 135	
2,3,4,6,7,8-HxCDF	77.9	!			13C-2,3,4,6,7,8-	HxCDF	88.6	40 - 135	
1,2,3,7,8,9-HxCDF	25.6				13C-1,2,3,7,8,9-	HxCDF	92.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	2350				13C-1,2,3,4,6,7,	8-HpCDF	88.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	173				13C-1,2,3,4,7,8,	9-HpCDF	84.3	40 - 135	
OCDF	8960			E 5	13C-OCDF	•	149	40 - 135	Н
				_	CRS 37CI-2,3,7,8-TC	DD	86.6	40 - 135	
Totals			· · · · · · · · · · · · · · · · · · ·		Toxic Equivalent Qu				
Total TCDD	66.4		69.8		TEQ (Min): 3	86	e ala	diag biya	· · · · · · · · · · · · · · · · · · ·
Total PeCDD	414								
Total HxCDD	3680				a Sample specific estimate	d detection limit.			
Total HpCDD	37000			す っ	b. Estimated maximum pos	sible concentration.			
Total TCDF	47.3		50.0	PJ	c. Method detection limit.		tima .		
Total PeCDF	352			Pゴ	d. Lower control limit - upp	per control limit.			
Total HxCDF	2680				e. TEQ based on (2005) W	orld Health Organiza	tion Toxic E	quivalent Factors	(WHO)
Total HpCDF	12800				The results are reported in			•	,

Approved By:

Client Data			Sample Data	-	Laboratory Data	· · · · · · · · · · · · · · · · · · ·			
	ADIS		Matrix:	Sediment	Lab Sample:	32549-015	Date Re	eceived:	2-Apr-10
	er-Carbondale, IL ar-10		Sample Size:	10.0 g	QC Batch No.:	2956	Date Ex	tracted:	19-Apr-10
Time Collected: 1820	ai-10		%Solids:	50.5	Date Analyzed DB-5:	21-Apr-10	Dates A	nalyzed DB-225:	21-Apr-10
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	8.00				<u>IS</u> 13C-2,3,7,8-TCI	DD .	91.4	40 - 135	
1,2,3,7,8-PeCDD	75.6				13C-1,2,3,7,8-Pe	eCDD	88.7	40 - 135	
1,2,3,4,7,8-HxCDD	194				13C-1,2,3,4,7,8-		93.1	40 - 135	
1,2,3,6,7,8-HxCDD	823				13C-1,2,3,6,7,8-		95.1	40 - 135	
1,2,3,7,8,9-HxCDD	314				13C-1,2,3,7,8,9-		94.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	23500			E 🌫	13C-1,2,3,4,6,7,		145	40 - 135	Н
OCDD	214000			D,E I	13C-OCDD		155	40 - 135	D,H
2,3,7,8-TCDF	2.81			•	13C-2,3,7,8-TCI	OF	88.6	40 - 135	٥,,,,
1,2,3,7,8-PeCDF	11.5				13C-1,2,3,7,8-Pe	CDF	89.7	40 - 135	
2,3,4,7,8-PeCDF	70.6				13C-2,3,4,7,8-Pe	the first of the second of the second	92.4	40 - 135	
1,2,3,4,7,8-HxCDF	187				13C-1,2,3,4,7,8-	HxCDF	95.4	40 - 135	
1,2,3,6,7,8-HxCDF	61.3				13C-1,2,3,6,7,8-	HxCDF	93.6	40 - 135	
2,3,4,6,7,8-HxCDF	154				13C-2,3,4,6,7,8-	HxCDF	87.1	40 - 135	
1,2,3,7,8,9-HxCDF	48.7				13C-1,2,3,7,8,9-1	HxCDF	88.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	4340			EJ	13C-1,2,3,4,6,7,8	B-HpCDF	101	40 - 135	
1,2,3,4,7,8,9-HpCDF	358				13C-1,2,3,4,7,8,9	-HpCDF	101	40 - 135	
OCDF	17800			E J	13C-OCDF		185	40 - 135	Н
·					CRS 37Cl-2,3,7,8-TC	DD	90.8	40 - 135	••
Totals					Toxic Equivalent Qu		ta e		1000
Total TCDD	143		145		TEQ (Min): 6	35			
Total PeCDD	838								
Total HxCDD	6980				a. Sample specific estimated	l detection limit.			
Total HpCDD	54300			7	b. Estimated maximum poss				* *
Total TCDF	84.8		88.2	PJ	c. Method detection limit.				
Total PeCDF	637			PΣ	d. Lower control limit - upp	er control limit.			
Total HxCDF	5960		u ⁵ ¥ + u _s − − u _s ± u − i − 1 − u		e. TEQ based on (2005) Wo		n Toxic F	nivalent Factors (WHO)
Total HpCDF	27700			ゴ	The results are reported in d				

Approved By:

Sample ID: A6-1 (0-	-6'')				1. 1.		EPA N	Aethod 8290
	dis er-Carbondale, IL ar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.62 g 66.0	QC Batch No.: 295			2-Apr-10 18-Apr-10 NA
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	0.944 7.46 19.4 69.2 30.2 2140 26000 ND 1.30 6.12 16.9 7.23 15.5 4.30 382 29.7 1770	0.794		J J	IS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,7,8,9-HxCD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HpC 13C-1,2,3,4,7,8,9-HpC 13C-1,2,3,4,7,8,9-HpC	93.1 9D 93.1 9D 88.5 9DD 87.3 109 84.9 89.7 96.3 96.	40 - 135 40 - 135	
				· ·	<u>CRS</u> 37Cl-2,3,7,8-TCDD	84.1	40 - 135	· · · · · · · · · · · · · · · · · · ·
Totals					Toxic Equivalent Quotient	t (TEQ) Data e		
Total TCDD Total PeCDD	14.1 72.5		17.5		TEQ (Min): 60.4			
Total HxCDD Total HpCDD	4390				a. Sample specific estimated detecti			
Total TCDF	7.42		9.74	P -	b. Estimated maximum possible corc. Method detection limit.	ncentration.		
Total PeCDF	66.3		66.6	PJ	d. Lower control limit - upper control	ol limit		
Total HxCDF	548		50.0	٠ .	e. TEQ based on (2005) World Hea		miyalent Factors (WHO)
Total HpCDF	2010			5	The results are reported in dry weig			

Approved By:

Sample ID: A6-2 (0)-6")							EPA I	Method 829
Client Data Name: Arca Project: Beaz	ndis zer-Carbondale, IL		Sample Data Matrix:	Sediment	Laboratory Data Lab Sample:	32551-002	Date Re	ceived:	2-Apr-10
	Mar-10		Sample Size:	7.77 g	QC Batch No.:	2954	Date Ex	tracted:	18-Apr-10
Time Collected: 0800			%Solids:	65.0	Date Analyzed DB-5:	20-Apr-10	Date Ar	alyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Star	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.562			J	<u>IS</u> 13C-2,3,7,8-T	CDD	91.0	40 - 135	
1,2,3,7,8-PeCDD	2.60			J	13C-1,2,3,7,8-	PeCDD	90.4	40 - 135	
1,2,3,4,7,8-HxCDD	6.41				13C-1,2,3,4,7,	8-HxCDD	91.8	40 - 135	
1,2,3,6,7,8-HxCDD	21.8				13C-1,2,3,6,7,	8-HxCDD	93.9	40 - 135	
1,2,3,7,8,9-HxCDD	10.8				13C-1,2,3,7,8,	9-HxCDD	91.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	728			. •	13C-1,2,3,4,6,	7,8-HpCDD	90.4	40 - 135	
OCDD	15200			E J	13C-OCDD		111	40 - 135	
2,3,7,8-TCDF	0.249			J	13C-2,3,7,8-Te	CDF	89.3	40 - 135	
1,2,3,7,8-PeCDF	0.532			J	13C-1,2,3,7,8-	PeCDF	92.2	40 - 135	
2,3,4,7,8-PeCDF	1.82			J	13C-2,3,4,7,8-	PeCDF	95.7	40 - 135	
1,2,3,4,7,8-HxCDF	3.93			J	13C-1,2,3,4,7,	8-HxCDF	92.0	40 - 135	
1,2,3,6,7,8-HxCDF	1.77			J	13C-1,2,3,6,7,	8-HxCDF	93.4	40 - 135	
2,3,4,6,7,8-HxCDF	4.10			J	13C-2,3,4,6,7,	8-HxCDF	86.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.931			13C-1,2,3,7,8,	9-HxCDF	84.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	123				13C-1,2,3,4,6,	7,8-HpCDF	83.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	9.03				13C-1,2,3,4,7,	8,9-HpCDF	82.6	40 - 135	
OCDF	575				13C-OCDF		88.3	40 - 135	
781					CRS 37Cl-2,3,7,8-T	CDD	89.6	40 - 135	
Totals					Toxic Equivalent (Quotient (TEQ) Da	ata e		
Total TCDD	5.14		6.41		TEQ (Min):	22.0			
Total PeCDD	20.1		21.4						
Total HxCDD	156			4 8 8 B	a. Sample specific estima	ited detection limit.			
Total HpCDD	1450				b. Estimated maximum p				
Total TCDF	3.20		4.12	P 25	c. Method detection limit				
Total PeCDF	17.0		18.0	PI	d. Lower control limit - u				
Total HxCDF	137				e. TEQ based on (2005)		on Toxic E	uivalent Factors (WHO
Total HpCDF	572				The results are reported i				

Approved By:

Sample ID: A6-3 (0)-6")							EPA N	Aethod 8290
Client Data			Sample Data		Laboratory Data	<u></u>			
Name: Arca			Matrix:	Sediment	Lab Sample:	32551-003	Date Re	eceived:	2-Apr-10
	zer-Carbondale, IL Mar-10		Sample Size:	8.70 g	QC Batch No.:	2954	Date Ex	ktracted:	18-Apr-10
Time Collected: 0815			%Solids:	58.3	Date Analyzed DB-5:	20-Apr-10	Date Ar	nalyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Star	ndard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.460			J ···	<u>IS</u> 13C-2,3,7,8-T	CDD	89.5		
1,2,3,7,8-PeCDD	2.24			J	13C-1,2,3,7,8	-PeCDD	87.4	40 - 135	
1,2,3,4,7,8-HxCDD	4.76			J	13C-1,2,3,4,7,	8-HxCDD	84.0	40 - 135	
1,2,3,6,7,8-HxCDD	10.1				13C-1,2,3,6,7,		88.4	40 - 135	
1,2,3,7,8,9-HxCDD	7.64				13C-1,2,3,7,8,	9-HxCDD	82.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	341				13C-1,2,3,4,6,	7,8-HpCDD	70.9	40 - 135	
OCDD .	12800			EJ	13C-OCDD		82.1	40 - 135	
2,3,7,8-TCDF	0.500			J	13C-2,3,7,8-T	CDF	84.6		
1,2,3,7,8-PeCDF	0.412			J	13C-1,2,3,7,8-	PeCDF	88.7	40 - 135	
2,3,4,7,8-PeCDF	4.45			J	13C-2,3,4,7,8-	PeCDF	92.8	40 - 135	
1,2,3,4,7,8-HxCDF	3.34			J	13C-1,2,3,4,7,	8-HxCDF	86.2	40 - 135	
1,2,3,6,7,8-HxCDF	1.92			J	13C-1,2,3,6,7,		89.2		
2,3,4,6,7,8-HxCDF	3.20			J	13C-2,3,4,6,7,		81.1	40 - 135	
1,2,3,7,8,9-HxCDF	0.822			J	13C-1,2,3,7,8,	9-HxCDF	77.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	41.7				13C-1,2,3,4,6,		67.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND		2.49	$\cup \times$	13C-1,2,3,4,7,	8,9-HpCDF	63.8	40 - 135	
OCDF	149				13C-OCDF		66.6	40 - 135	
					CRS 37CI-2,3,7,8-T	CDD	88.4	40 - 135	
Totals					Toxic Equivalent	Quotient (TEQ) Da	nta e		
Total TCDD	4.00		5.66		TEQ (Min):	15.0		1.00	
Total PeCDD	17.9		20.7		,				
Total HxCDD	111				a. Sample specific estima	ated detection limit.			
Total HpCDD	770				b. Estimated maximum p	ossible concentration.			
Total TCDF	13.0		13.5		c. Method detection limi	t.			
Total PeCDF	39.9				d. Lower control limit - ı	apper control limit.			
Total HxCDF	61.9				e TEQ based on (2005)		on Toxic E	quivalent Factors.(WHO)
Total HpCDF	154		157		The results are reported in				

Approved By:

Sample ID: A6-4 (0	-6")		-	y 183				EPA N	Method 8290
	dis er-Carbondale, IL far-10		Sample Data Matrix: Sample Size: %Solids:	Soil 6.98 g 72.2	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-004 2956 21-Apr-10	Date Re Date Ex Dates A		2-Apr-10 19-Apr-10 21-Apr-10
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	lard	%R	LCL-UCL ^d	
2,3,7,8-TCDD	ND		0.460	UX	<u>IS</u> 13C-2,3,7,8-TC	DD	91.0	40 - 135	
1,2,3,7,8-PeCDD	3.07			J	13C-1,2,3,7,8-P	eCDD	88.4	40 - 135	
1,2,3,4,7,8-HxCDD	7.19				13C-1,2,3,4,7,8-	HxCDD	94.6	40 - 135	
1,2,3,6,7,8-HxCDD	20.0				13C-1,2,3,6,7,8-	HxCDD	95.6	40 - 135	
1,2,3,7,8,9-HxCDD	12.5				13C-1,2,3,7,8,9-	HxCDD	93.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	633				13C-1,2,3,4,6,7,	8-HpCDD	81.9	40 - 135	
OCDD	10400			EI	13C-OCDD		93.1	40 - 135	
2,3,7,8-TCDF	1.31				13C-2,3,7,8-TC	DF	90.2	40 - 135	
1,2,3,7,8-PeCDF	1.15			J	13C-1,2,3,7,8-P	eCDF	92.2	40 - 135	
2,3,4,7,8-PeCDF	16.9				13C-2,3,4,7,8-P		92.4	40 - 135	
1,2,3,4,7,8-HxCDF	6.37				13C-1,2,3,4,7,8-		86.2	40 - 135	
1,2,3,6,7,8-HxCDF	4.28			J	13C-1,2,3,6,7,8-		89.0	40 - 135	
2,3,4,6,7,8-HxCDF	9.27				13C-2,3,4,6,7,8-	200	86.5	40 - 135	
1,2,3,7,8,9-HxCDF	2.35			J	13C-1,2,3,7,8,9-		85.1	40 - 135	
1,2,3,4,6,7,8-HpCDF	103				13C-1,2,3,4,6,7,		78.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	8.45				13C-1,2,3,4,7,8,	•	77.2	40 - 135	
OCDF	459				13C-OCDF	,pe.b.	78.2	40 - 135	
					CRS 37Cl-2,3,7,8-TC	ממי	91.3	40 - 135	
Totals	***************************************				Toxic Equivalent Q			.0 133	
Total TCDD	7.96		9.37			5.2			
Total PeCDD	29.1		30.1						
Total HxCDD	158				a. Sample specific estimate	d detection limit.			
Total HpCDD	1270				b. Estimated maximum pos	sible concentration.			
Total TCDF	37.2		39.8		c. Method detection limit.				
Total PeCDF	132		133	PJ	d. Lower control limit - upp	per control limit.			
Total HxCDF	174			•	e. TEQ based on (2005) W		on Toxic F	uivalent Factors (WHO)
Total HpCDF	440				The results are reported in			• •	

Approved By:

Sample ID: A6-5 (0) -6'')							EPA I	Method 8290
	zer-Carbondale, IL Mar-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.56 g 67.4	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-005 2954 20-Apr-10	Date E	eceived: ktracted: nalyzed DB-225;	2-Apr-10 18-Apr-10 NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Sta	ındard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.348			<u>IS</u> 13C-2,3,7,8-	TCDD	90.5	40 - 135	
1,2,3,7,8-PeCDD	0.786			J	13C-1,2,3,7,8	B-PeCDD	93.5	40 - 135	
1,2,3,4,7,8-HxCDD	1.79			J.	13C-1,2,3,4,7	7,8-HxCDD	89.7	40 - 135	
1,2,3,6,7,8-HxCDD	2.66			J	13C-1,2,3,6,7	7,8 - HxCDD	93.6	40 - 135	
1,2,3,7,8,9-HxCDD	2.58			J ·	13C-1,2,3,7,8	3,9-HxCDD	89.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	91.6				13C-1,2,3,4,6	5,7,8-HpCDD	80.5	40 - 135	
OCDD	2840				13C-OCDD		79.1	40 - 135	
2,3,7,8-TCDF	ND	0.507			13C-2,3,7,8-	ГCDF	89.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.389			13C-1,2,3,7,8	3-PeCDF	98.2	40 - 135	
2,3,4,7,8-PeCDF	1.02			J	13C-2,3,4,7,8	-PeCDF	103	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.502			13C-1,2,3,4,7	,8-HxCDF	81.9	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.500			13C-1,2,3,6,7	,8-HxCDF	88.2	40 - 135	
2,3,4,6,7,8-HxCDF	0.540			J	13C-2,3,4,6,7	,8-HxCDF	83.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.271			13C-1,2,3,7,8	,9-HxCDF	81.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	5.65				13C-1,2,3,4,6	,7,8-HpCDF	76.2	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.26			13C-1,2,3,4,7	-	75.2		
OCDF	20.7				13C-OCDF		70.3		
					<u>CRS</u> 37Cl-2,3,7,8-	TCDD	86.3	40 - 135	
Totals			, , , , , , , , , , , , , , , , , , ,			Quotient (TEQ) Da			
Total TCDD	0.729		1.56		TEQ (Min):	3.68	1 .544		
Total PeCDD	7.81			I					
Total HxCDD	33.2		33.9		a. Sample specific estin	nated detection limit			
Total HpCDD	221			•	b. Estimated maximum				
Total TCDF	1.96		3.14		c. Method detection lim	•			
Total PeCDF	7.19				d. Lower control limit -	upper control limit.			
Total HxCDF	8.05		8.83			World Health Organization	n Toxic F	auivalent Factors (WHO)
Total HpCDF	22.3					in dry weight. The sample			

Approved By:

Sample ID: FIELD DU	PLICATE #5						EPA I	Method 829
Client Data Name: Arcadis Project: Beazer-Ca Date Collected: 31-Mar-10 Time Collected: NA	urbondale, IL)	Sample Data Matrix: Sample Size: %Solids:	Sediment 7.42 g 67.4	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-006 2954 20-Apr-10	Date Re Date Ex Date An		2-Apr-10 18-Apr-10 NA
Analyte Conc.	. (pg/g) DL ^a	EMPC ^b	Qualifiers	Labeled Standa	rd	%R	LCL-UCLd	Qualifiers
2,3,7,8-TCDD ND	0.344			<u>IS</u> 13C-2,3,7,8-TCD	D	88.4	40 - 135	
1,2,3,7,8-PeCDD 0.70	01		J	13C-1,2,3,7,8-PeC	CDD	100	40 - 135	
1,2,3,4,7,8-HxCDD ND		1.20	υ×	13C-1,2,3,4,7,8-H	xCDD	88.9	40 - 135	
1,2,3,6,7,8-HxCDD ND		2.61	UX	13C-1,2,3,6,7,8-H	xCDD	92.4	40 - 135	
1,2,3,7,8,9-HxCDD 2.54	4		j	13C-1,2,3,7,8,9-H		91.8	40 - 135	
1,2,3,4,6,7,8-HpCDD 97.5	5			13C-1,2,3,4,6,7,8-		98.7	40 - 135	
OCDD 324	0		•	13C-OCDD		110	40 - 135	
2,3,7,8-TCDF ND	0.642			13C-2,3,7,8-TCD	F	85.8	40 - 135	
1,2,3,7,8-PeCDF ND	0.406			13C-1,2,3,7,8-PeC		93.3	40 - 135	
2,3,4,7,8-PeCDF 0.76	51		J	13C-2,3,4,7,8-PeC		104	40 - 135	
1,2,3,4,7,8-HxCDF ND	0.605			13C-1,2,3,4,7,8-H		83.1	40 - 135	
1,2,3,6,7,8-HxCDF ND	0.621			13C-1,2,3,6,7,8-H		86.4	40 - 135	
2,3,4,6,7,8-HxCDF 0.62			J	13C-2,3,4,6,7,8-H	2.5	84.2	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.401		v	13C-1,2,3,7,8,9-H		86.9	40 - 135	
1,2,3,4,6,7,8-HpCDF 7.48	3			13C-1,2,3,4,6,7,8-		86.8	40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.713			13C-1,2,3,4,7,8,9-	*	92.7	40 - 135	
OCDF 25.9)			13C-OCDF	i i pobi	98.2	40 - 135	
				CRS 37CI-2,3,7,8-TCD	D	85.8	40 - 135	
Totals				Toxic Equivalent Qua			40 - 133	
Total TCDD ND		0.506	UX Z	TEQ (Min): 3.2				<u> </u>
Total PeCDD 2.12	2	3.91	Í					
Total HxCDD 26.7	7	30.5		a. Sample specific estimated of	detection limit.			
Total HpCDD 226				b. Estimated maximum possil				
Total TCDF 0.77	75	1.09		c. Method detection limit.				
Total PeCDF 3.13		4.98		d. Lower control limit - upper	control limit			
Total HxCDF 7.98		8.61		e. TEQ based on (2005) Worl		ion Toxic E	mivalent Factors (WHO
Total HpCDF 25.9				The results are reported in dry				

Approved By:

Sample ID: A6-6 (0	-6")	N*************************************						EPA N	Method 8290
Client Data			Sample Data		Laboratory Data				
Name: Arca			Matrix:	Sediment	Lab Sample:	32551-012	Date Re	ceived:	2-Apr-10
	er-Carbondale, IL Iar-10		Sample Size:	8.33 g	QC Batch No.:	2954	Date Ex	tracted:	18-Apr-10
Time Collected: 0915	141-10		%Solids:	60.3	Date Analyzed DB-5:	20-Apr-10		alyzed DB-225:	NA
Analyte	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stand	lard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.468			J	<u>IS</u> 13C-2,3,7,8-TC	DD	94.1	40 - 135	
1,2,3,7,8-PeCDD	1.87			J	13C-1,2,3,7,8-P	eCDD	94.8	40 - 135	
1,2,3,4,7,8-HxCDD	3.72			J	13C-1,2,3,4,7,8-	HxCDD	93.2	40 - 135	
1,2,3,6,7,8-HxCDD	10.7				13C-1,2,3,6,7,8-	HxCDD	94.2	40 - 135	
1,2,3,7,8,9-HxCDD	7.00				13C-1,2,3,7,8,9-	HxCDD	92.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	358				13C-1,2,3,4,6,7,		77.9	40 - 135	
OCDD	11500			E.J	13C-OCDD		89.0	40 - 135	
2,3,7,8-TCDF	ND		0.299	υ×	13C-2,3,7,8-TC	DF	92.2	40 - 135	
1,2,3,7,8-PeCDF	0.311			J	13C-1,2,3,7,8-P	eCDF	95.9	40 - 135	
2,3,4,7,8-PeCDF	2.34			J	13C-2,3,4,7,8-P		98.7	40 - 135	
1,2,3,4,7,8-HxCDF	1.87			J.	13C-1,2,3,4,7,8-		89.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND		1.14	UX	13C-1,2,3,6,7,8-	HxCDF	92.2	40 - 135	
2,3,4,6,7,8-HxCDF	2.46			J	13C-2,3,4,6,7,8-	HxCDF	87.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.666			13C-1,2,3,7,8,9-	HxCDF	83.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	42.6				13C-1,2,3,4,6,7,	8-HpCDF	75.4	40 - 135	
1,2,3,4,7,8,9-HpCDF	2.60			J	13C-1,2,3,4,7,8,	9-HpCDF	73.6	40 - 135	
OCDF	175				13C-OCDF		70.5	40 - 135	
					CRS 37CI-2,3,7,8-TC	DD	88.9	40 - 135	
Totals			10000	***************************************	Toxic Equivalent Qu		ata e		*****
Total TCDD	2.96		4.67		TEQ (Min): 1	3.2	- 1		
Total PeCDD	14.2		16.6						
Total HxCDD	104				a. Sample specific estimate	d detection limit.			
Total HpCDD	809				b. Estimated maximum pos				
Total TCDF	6.31		6.93		c. Method detection limit.				
Total PeCDF	21.9		22.8		d. Lower control limit - upp	per control limit.			
Total HxCDF	52.8		53.9		e. TEQ based on (2005) We		on Toxic Ed	uivalent Factors (WHO)
Total HpCDF	176				The results are reported in o				

Approved By:

Sample ID: A6-7 (0-	-6")							EPA N	Aethod 8290
	dis er-Carbondale, IL far-10		Sample Data Matrix: Sample Size: %Solids:	Sediment 7.14 g 70.2	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32551-013 2954 20-Apr-10	Date Re Date Ex Date An		2-Apr-10 18-Apr-10 NA
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standar	·d	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.321			J	<u>IS</u> 13C-2,3,7,8-TCDI)	85.9	40 - 135	
1,2,3,7,8-PeCDD	0.761			J	13C-1,2,3,7,8-PeC	DD	86.8	40 - 135	
1,2,3,4,7,8-HxCDD	1.74			J	13C-1,2,3,4,7,8-H	xCDD	87.3	40 - 135	
1,2,3,6,7,8-HxCDD	4.18			J	13C-1,2,3,6,7,8-H	xCDD	90.8	40 - 135	
1,2,3,7,8,9-HxCDD	2.95			J	13C-1,2,3,7,8,9-H	xCDD	86.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	136				13C-1,2,3,4,6,7,8-	HpCDD	74.2	40 - 135	
OCDD	3600				13C-OCDD		73.4	40 - 135	
2,3,7,8-TCDF	ND	0.339			13C-2,3,7,8-TCDF	7	83.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.683			13C-1,2,3,7,8-PeC	DF	87.9	40 - 135	
2,3,4,7,8-PeCDF	2.47			J	13C-2,3,4,7,8-PeC	DF	91.9	40 - 135	
1,2,3,4,7,8-HxCDF	1.05			J	13C-1,2,3,4,7,8-H	CDF	79.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.701	UX	13C-1,2,3,6,7,8-H	c CDF	82.7	40 - 135	
2,3,4,6,7,8-HxCDF	1.34			J ·	13C-2,3,4,6,7,8-H	cDF	80.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.562			13C-1,2,3,7,8,9-H	cCDF	78.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.0				13C-1,2,3,4,6,7,8-1		70.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.40			J	13C-1,2,3,4,7,8,9-1	•	68.9	40 - 135	
OCDF	79.1				13C-OCDF		65.0	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDl	D	85.3	40 - 135	
Totals			1,2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		Toxic Equivalent Quo				
Total TCDD	3.65		4.68	1	TEQ (Min): 5.6	- · · · · · · · · · · · · · · · · · · ·			
Total PeCDD	7.20		9.26						
Total HxCDD	40.7		41.6		a. Sample specific estimated d	etection limit.			
Total HpCDD	297				b. Estimated maximum possib	le concentration.			
Total TCDF	7.91		8.93	PJ	c. Method detection limit.				
Total PeCDF	17.1			PJ	d. Lower control limit - upper	control limit.			
Total HxCDF	30.7		31.4	-	e. TEQ based on (2005) World		ion Toxic Ea	บivalent Factors (WHO)
Total HpCDF	80.0				The results are reported in dry				

Approved By:

Sample ID: A6-8 (0-	-6")								EPA N	Aethod 8290
Client Data Name: Arcad Project: Beaze: Date Collected: 31-Ma Time Collected: 0925	r-Carbondale, IL		Sample Data Matrix: Sample Size: %Solids:	Sediment 6.69 g 76.7	Lab QC 1	oratory Data Sample: Batch No.: Analyzed DB-5:	32551-014 2954 20-Apr-10	Date Re Date Ex Date An		2-Apr-10 18-Apr-10 NA
Analyte C	onc. (pg/g)	DL a	$EMPC_p$	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
, , ,	ND ND		0.196 0.750	U× UX	<u>IS</u>	13C-2,3,7,8-TCL 13C-1,2,3,7,8-Pe		88.9 81.4	40 - 135 40 - 135	
1,2,3,4,7,8-HxCDD	1.46			J		13C-1,2,3,4,7,8-1	HxCDD	86.8	40 - 135	
1,2,3,6,7,8-HxCDD	2.16			J		13C-1,2,3,6,7,8-1	HxCDD	89.8	40 - 135	
1,2,3,7,8,9-HxCDD	2.62			J		13C-1,2,3,7,8,9-I	HxCDD	84.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	84.7					13C-1,2,3,4,6,7,8	B-HpCDD	71.5	40 - 135	
OCDD	3360					13C-OCDD		73.8	40 - 135	
2,3,7,8-TCDF	ND	0.250				13C-2,3,7,8-TCE)F	85.0	40 - 135	
1,2,3,7,8-PeCDF	ND	0.421				13C-1,2,3,7,8-Pe	CDF	81.8	40 - 135	
2,3,4,7,8-PeCDF	ND	0.373				13C-2,3,4,7,8-Pe	CDF	84.5	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.207				13C-1,2,3,4,7,8-I		84.9	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.207				13C-1,2,3,6,7,8-H		87.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.245				13C-2,3,4,6,7,8-I		81.9	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.329			1	13C-1,2,3,7,8,9-I		77.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.30			J		13C-1,2,3,4,6,7,8		68.4	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.229				13C-1,2,3,4,7,8,9	•	67.9	40 - 135	
OCDF	3.96			J [°]		13C-OCDF	.	64.3	40 - 135	
					CRS	37Cl-2,3,7,8-TCI	DD	83.3	40 - 135	
Totals			William	17.49	 	ic Equivalent Qu				
Total TCDD	1.32		1.51		TEC) (Min): 2.	.50			
Total PeCDD	4.29		6.88			- ` ,				
Total HxCDD	37.6				a. Sai	nple specific estimated	detection limit.			
Total HpCDD	216				t	timated maximum poss				
Total TCDF	0.374		0.566	*		thod detection limit.				
Total PeCDF	0.299		0.644		1	wer control limit - uppe	er control limit.			
Total HxCDF	ND		1.27		ł	Q based on (2005) Wo		tion Toxic Fe	mivalent Factors (WHO)
Total HpCDF	1.30		3.85			esults are reported in di				

Analyst: MAS

Approved By:

Martha M. Maier 23-Apr-2010 08:24

Sample ID: NPL (0	-6")		1441					EPA N	Method 8290
Client Data			Sample Data	•	Laboratory Data			·	
1	ADIS		Matrix:	Soil ·	Lab Sample:	32549-012	Date Re	ceived:	2-Apr-10
	er-Carbondale, IL [ar-10		Sample Size:	7.83 g	QC Batch No.:	2967	Date Extracted:		21-Apr-10
Time Collected: 1600	141-10		%Solids:	64.4	Date Analyzed DB-5:	24-Apr-10	Date An	alyzed DB-225:	NA NA
Analyte (Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Stan		%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.630			J	<u>IS</u> 13C-2,3,7,8-TC	DD	92.8	40 - 135	
1,2,3,7,8-PeCDD	2.44			J	13C-1,2,3,7,8-F	eCDD	91.7	40 - 135	
1,2,3,4,7,8-HxCDD	4.75			J	13C-1,2,3,4,7,8	-HxCDD	96.6	40 - 135	
1,2,3,6,7,8-HxCDD	11.4				13C-1,2,3,6,7,8	-HxCDD	101	40 - 135	
1,2,3,7,8,9-HxCDD	7.23				13C-1,2,3,7,8,9	-HxCDD	98.3	40 - 135	
1,2,3,4,6,7,8-HpCDD	413				13C-1,2,3,4,6,7	,8-HpCDD	91.6	40 - 135	
OCDD	12600			Eゴ	13C-OCDD		112	40 - 135	
2,3,7,8-TCDF	0.928			J	13C-2,3,7,8-TC	DF	88.9	40 - 135	
1,2,3,7,8-PeCDF	0.808			J .	13C-1,2,3,7,8-F	eCDF	86.1	40 - 135	
2,3,4,7,8-PeCDF	3.28			J	13C-2,3,4,7,8-F	eCDF	90.1	40 - 135	
1,2,3,4,7,8-HxCDF	3.55			J	13C-1,2,3,4,7,8	-HxCDF	86.0	40 - 135	
1,2,3,6,7,8-HxCDF	1.95			J	13C-1,2,3,6,7,8	-HxCDF	89.2	40 - 135	
2,3,4,6,7,8-HxCDF	3.48		•	J	13C-2,3,4,6,7,8	-HxCDF	90.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.01			13C-1,2,3,7,8,9	-HxCDF	89.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	51.8				13C-1,2,3,4,6,7	,8-HpCDF	82.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	4.00			J	13C-1,2,3,4,7,8	,9-HpCDF	84.2	40 - 135	
OCDF	215				13C-OCDF		90.2	40 - 135	
					CRS 37Cl-2,3,7,8-TO	CDD	89.2	40 - 135	
Totals					Toxic Equivalent Q	uotient (TEQ) Da	ta e		
Total TCDD	31.9		32.4		TEQ (Min):	15.9			
Total PeCDD	38.1		45.2						
Total HxCDD	120				a. Sample specific estimat	ed detection limit.			
Total HpCDD	854				b. Estimated maximum po	ssible concentration.			
Total TCDF	20.1		21.5		c. Method detection limit.				
Total PeCDF	22.9				d. Lower control limit - up	per control limit.			
Total HxCDF	61.4				e. TEQ based on (2005) W	orld Health Organization	on Toxic E	quivalent Factors.(WHO)
Total HpCDF	212				The results are reported in				

Analyst: MAS

Approved By:

Martha M. Maier 28-Apr-2010 14:28

Sample ID: RB03	32910	;						EPA N	Aethod 8290
Project: Beaz	CADIS cer-Carbondale, IL far-10		Sample Data Matrix: Sample Size:	Aqueous 1.00 L	QC Batch No.: 29	46	Date Red Date Ext		2-Apr-10 14-Apr-10 NA
Analyte	Conc. (pg/L)	DL a	\mathbf{EMPC}^{b}	Qualifiers	Labeled Standard		%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.231			<u>IS</u> 13C-2,3,7,8-TCDD		83.4	40 - 135	
1,2,3,7,8-PeCDD	ND	0.299			13C-1,2,3,7,8-PeCDD		61.3	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.321			13C-1,2,3,4,7,8-HxCE	D	85.3	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.332			13C-1,2,3,6,7,8-HxCD	DD	87.1	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.324			13C-1,2,3,7,8,9-HxCE	DD	82.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	0.531			J,B	13C-1,2,3,4,6,7,8-HpC	CDD	72.9	40 - 135	
OCDD	2.82			J,B	13C-OCDD		51.2	40 - 135	
2,3,7,8-TCDF	ND	0.218			13C-2,3,7,8-TCDF		87.9	40 - 135	
1,2,3,7,8-PeCDF	ND	0.248			13C-1,2,3,7,8-PeCDF		70.7	40 - 135	
2,3,4,7,8-PeCDF	ND	0.226			13C-2,3,4,7,8-PeCDF		68.9	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.163			13C-1,2,3,4,7,8-HxCD)F	64.5	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.156			13C-1,2,3,6,7,8-HxCD	F	76.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.170			13C-2,3,4,6,7,8-HxCD	F	78.4	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.238			13C-1,2,3,7,8,9-HxCD	F	75.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.215		1	13C-1,2,3,4,6,7,8-HpC	CDF	72.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.246			13C-1,2,3,4,7,8,9-HpC	CDF	66.4	40 - 135	
OCDF	ND	0.622			13C-OCDF		50.1	40 - 135	
					<u>CRS</u> 37Cl-2,3,7,8-TCDD		87.9	40 - 135	
Totals					Toxic Equivalent Quotien	t (TEQ) Data	a e		
Total TCDD	ND	0.231			TEQ (Min): 0.0061	6			
Total PeCDD	ND	0.299							
Total HxCDD	ND	0.326			a. Sample specific estimated detect	ion limit.			
Total HpCDD	1.55			В	b. Estimated maximum possible co				
Total TCDF	ND	0.218			c. Method detection limit.				
Total PeCDF	ND	0.237			d. Lower control limit - upper cont	rol limit.			
Total HxCDF	ND	0.182			e. TEQ based on (2005) World Hea		Toxic Ed	quivalent Factors.(WHO)
Total HpCDF	ND	0.230							-,

Analyst: TEH

Approved By:

Martha M. Maier 22-Apr-2010 12:38

Sample ID: RB033010		-					EPA N	Method 8290
Client Data		Sample Data	· · · · · · · · · · · · · · · · · · ·	Laboratory Data			<u> </u>	
Name: Arcadis Project: Beazer-Carbondale, IL		Matrix:	Aqueous	Lab Sample:	32550-001	Date Re	ceived:	2-Apr-10
Date Collected: 30-Mar-10		Sample Size:	0.992 L	QC Batch No.:	2946	Date Ex	tracted:	14-Apr-10
Time Collected: 1800				Date Analyzed DB-5:	21-Apr-10	Date An	alyzed DB-225:	NA
Analyte Conc. (pg/L)	DL a	EMPC ^b	Qualifiers	Labeled Stand	lard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD ND	0.233	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>IS</u> 13C-2,3,7,8-TC	DD	86.6	40 - 135	
1,2,3,7,8-PeCDD ND	0.211			13C-1,2,3,7,8-P	eCDD	66.2	40 - 135	
1,2,3,4,7,8-HxCDD ND	0.284			13C-1,2,3,4,7,8	-HxCDD	91.3	40 - 135	
1,2,3,6,7,8-HxCDD ND	0.282			13C-1,2,3,6,7,8	-HxCDD	94.4	40 - 135	
1,2,3,7,8,9-HxCDD ND	0.294			13C-1,2,3,7,8,9	-HxCDD	88.1	40 - 135	
1,2,3,4,6,7,8-HpCDD ND	0.335	•		13C-1,2,3,4,6,7	,8-HpCDD	82.3	40 - 135	
OCDD 4.49			J,B	13C-OCDD		66.0	40 - 135	
2,3,7,8-TCDF ND	0.183			13C-2,3,7,8-TC	DF	93.1	40 - 135	
1,2,3,7,8-PeCDF ND	0.225			13C-1,2,3,7,8-P	eCDF	78.2	40 - 135	
2,3,4,7,8-PeCDF ND	0.217			13C-2,3,4,7,8-P	eCDF	76.1	40 - 135	
1,2,3,4,7,8-HxCDF ND	0.158			13C-1,2,3,4,7,8	HxCDF	68.9	40 - 135	
1,2,3,6,7,8-HxCDF ND	0.150			13C-1,2,3,6,7,8	HxCDF	83.2	40 - 135	
2,3,4,6,7,8-HxCDF ND	0.166			13C-2,3,4,6,7,8	HxCDF	84.7	40 - 135	
1,2,3,7,8,9-HxCDF ND	0.222			13C-1,2,3,7,8,9	HxCDF	82.4	40 - 135	
1,2,3,4,6,7,8-HpCDF ND	0.232			13C-1,2,3,4,6,7	8-HpCDF	79.1	40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.238			13C-1,2,3,4,7,8,	-	77.9	40 - 135	
OCDF ND	0.455			13C-OCDF		65.6	40 - 135	
				CRS 37Cl-2,3,7,8-TC	CDD	86.2	40 - 135	
Totals			***	Toxic Equivalent Q				
Total TCDD ND	0.233			TEQ (Min):	0.00135			
Total PeCDD ND	0.211			- · · · · · · · · · · · · · · · · · · ·				
Total HxCDD ND	0.287			a. Sample specific estimate	d detection limit.			
Total HpCDD ND		0.801		b. Estimated maximum pos				
Total TCDF ND	0.183			c. Method detection limit.				
Total PeCDF ND	0.221		٠,	d. Lower control limit - up	per control limit			
Total HxCDF ND	0.174			e. TEQ based on (2005) W		n Toxic Fo	uivalent Factors (WHO)
Total HpCDF ND	0.235		* .	(2000) 11	Alvano Organizatio	TOXIC EC	jurraioni i aviois.(** 1 kO j

Analyst: TEH

Approved By:

Martha M. Maier 21-Apr-2010 14:07

Sample ID:	RB033110							EPA N	Method 8290
Project: Date Collected:	Arcadis Beazer-Carbondale, 31-Mar-10 1200	IL	Sample Data Matrix: Sample Size:	Aqueous 1.01 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	32550-002 2946 21-Apr-10	Date Re Date Ex Date An		2-Apr-10 14-Apr-10 NA
Analyte	Conc. (pg/L)	DL ^a	$EMPC_p$	Qualifiers	Labeled Stand	dard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND		0.201		<u>IS</u> 13C-2,3,7,8-TC	DD	83.1	40 - 135	
1,2,3,7,8-PeCDD	ND	0.192			13C-1,2,3,7,8-F	PeCDD	62.8	40 - 135	
1,2,3,4,7,8-HxCD	D ND	0.310			13C-1,2,3,4,7,8	-HxCDD	86.0	40 - 135	
1,2,3,6,7,8-HxCD	D ND	0.328			13C-1,2,3,6,7,8	-HxCDD	87.9	40 - 135	
1,2,3,7,8,9-HxCD	D ND	0.312			13C-1,2,3,7,8,9	-HxCDD	82.8	40 - 135	
1,2,3,4,6,7,8-HpC	DD 0.529			J,B	13C-1,2,3,4,6,7	,8-HpCDD	81.7	40 - 135	
OCDD	2.51			J,B	13C-OCDD		66.4	40 - 135	
2,3,7,8-TCDF	ND	0.201			13C-2,3,7,8-TC	DF	88.5	40 - 135	
1,2,3,7,8-PeCDF	ND	0.247			13C-1,2,3,7,8-P	eCDF	73.7	40 - 135	
2,3,4,7,8-PeCDF	ND	0.236			13C-2,3,4,7,8-P	eCDF	71.5	40 - 135	
1,2,3,4,7,8-HxCD	F ND	0.159			13C-1,2,3,4,7,8	-HxCDF	64.4	40 - 135	
1,2,3,6,7,8-HxCD	F ND	0.155			13C-1,2,3,6,7,8	-HxCDF	78.4	40 - 135	
2,3,4,6,7,8-HxCD	F ND	0.171			13C-2,3,4,6,7,8	-HxCDF	79.1	40 - 135	
1,2,3,7,8,9-HxCD	F ND	0.220			13C-1,2,3,7,8,9		77.5	40 - 135	
1,2,3,4,6,7,8-HpC	DF ND	0.252			13C-1,2,3,4,6,7	,8-HpCDF	76.4	40 - 135	
1,2,3,4,7,8,9-HpC	DF ND	0.258			13C-1,2,3,4,7,8	•	73.8	40 - 135	
OCDF	ND	0.497			13C-OCDF		63.5	40 - 135	
					CRS 37Cl-2,3,7,8-TO	CDD	87.7	40 - 135	
Totals					Toxic Equivalent Q		ıta ^e		
Total TCDD	0.637		0.839		TEQ (Min):	0.00604			
Total PeCDD	ND	0.192			C C C C C C C C C C				
Total HxCDD	ND	0.317	1 + 1 - \$1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		a. Sample specific estimate	ed detection limit.			
Total HpCDD	1.46	•		В	b. Estimated maximum po				
Total TCDF	ND	0.201			c. Method detection limit.	7. 9			
Total PeCDF	ND	0.242			d. Lower control limit - up	per control limit			
Total HxCDF	ND	0.176	sellengeling		e. TEQ based on (2005) W		on Toxic F	mivalent Factors (WHO)
Total HpCDF	ND	0.255				ona mann Organizatio	on TOXICE	quivalent i actors.(wild)

Analyst: TEH

Approved By:

Martha M. Maier 21-Apr-2010 14:07

Client Sample ID: A1-35 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-021 Date Sampled: 03/30/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 1 % Moisture: 31	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 21:22 15 g 003200	MS Rur Final Instr	wgt/Vol:	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	48	ug/kg	4.3	
Naphthalene	7.7 3	9.7	ug/kg	0.83	
Acenaphthylene	19	9.7	ug/kg	1.1	
Acenaphthene	3.0 J	9.7	ug/kg	0.92	
Fluorene	ND	9.7	ug/kg	1.3	
Phenanthrene	29	9.7	ug/kg	1.5	
Anthracene	20	9.7	ug/kg	0.94	
Fluoranthene	47	9.7	ug/kg	1.0	
Pyrene	40	9.7	ug/kg	0.97	
Benzo (a) anthracene	32	9.7	ug/kg	1.2	
Chrysene	56	9.7	ug/kg	1.1	
Benzo (b) fluoranthene	73	9.7	ug/kg	1.5	
Benzo (k) fluoranthene	37	9.7	ug/kg	1.9	
Benzo (a) pyrene	40	9.7	ug/kg	0.96	
Indeno(1,2,3-cd) pyrene	32	9.7	ug/kg	0.99	
Dibenzo (a, h) anthracene	9.4 J	9.7	ug/kg	1.1	
Benzo (ghi) perylene	36	9.7	ug/kg	0.96	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Nitrobenzene-d5	65	(27 - 110)			
Terphenyl-d14	68	(21 - 130)		
2-Fluorobiphenyl	72	(28 - 108			
2-Fluorophenol	60	(28 - 107			
Phenol-d5	62	(30 - 112			
2,4,6-Tribromophenol	81	(21 - 116)		
- , ,					

NOTE(S):

J Estimated result, Result is less than RL.

Client Sample ID: A1-36 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-018 Date Sampled: 03/30/10 08:45 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 0.99 * Moisture: 31		04/02/10 1 04/06/10 20:16 15.2 g 003200	0:15 MS Rur Final Instru	Wgt/Vol:	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	22 J	47	ug/kg	4.3	
Naphthalene	7.2 J	9.6	ug/kg	0.82	
Acenaphthylene	23	9.6	ug/kg	1.1	
Acenaphthene	4.2 J	9.6	ug/kg	0.92	,
Fluorene	3.0 J	9.6	ug/kg	1.3	
Phenanthrene	27	9.6	ug/kg	1.5	
Anthracene	34	9.6	ug/kg	0.93	
Fluoranthene	56	9.6	ug/kg	1.0	
Pyrene	53	9.6	ug/kg	0.96	
Benzo (a) anthracene	46	9.6	ug/kg	1.2	
Chrysene	74	9.6	ug/kg	1.1	
Benzo (b) fluoranthene	130	9.6	ug/kg	1.5	
Benzo(k) fluoranthene	57	9.6	ug/kg	1.9	
Benzo (a) pyrene	45	9.6	ug/kg	0.95	
Indeno(1,2,3-cd)pyrene	53	9.6	ug/kg	0.98	
Dibenzo(a,h)anthracene	18	9.6	ug/kg	1.1	
Benzo(ghi)perylene	48	9.6	ug/kg	0.95	
		RECOVERY LIMITS			
	66	(27 - 110)			
	65	(21 - 130)			4,
2-Fluorobiphenyl	69	(28 - 108)			
	62	(28 - 107)			
Phenol-d5	61	(30 - 112)			
2,4,6-Tribromophenol	76	(21 - 116)			

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: Al-37 (0-6)

GC/MS Semivolatiles

Lot-Sample #:	C0D020489-017	Work Order #:	LXGQK1AC	Matrix:	SOLID
Date Sampled:	03/30/10 08:40	Date Received:	04/02/10 10:15	MS Run #	0095277
Prep Date:	04/05/10	Analysis Date:	04/06/10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Prep Batch #:	0095430	Analysis Time:			
Dilution Factor:	20	Initial Wgt/Vol:	15 q	Final Wgt/Vol:	0 5 mt.
<pre>% Moisture:</pre>	38	Analyst ID:	003200	Instrument ID.:	
		Method:			,55

DADAMORD		REPORTING	_	
PARAMETER	RESULT	LIMIT	UNITS	MDL MDL
Pentachlorophenol	8000	1100	ug/kg	96
Naphthalene	840	220	ug/kg	19
Acenaphthylene	6400	220	ug/kg	25
Acenaphthene	280	220	uq/kq	21
Fluorene	590	220	ug/kg	28
Phenanthrene	12000	220	ug/kg	34
Anthracene	9600	220	ug/kg	21
Fluoranthene	 60000- E-	220	ug/kg	23
Pyrene	~49000 ■	220	uq/kq	22
Benzo (a) anthracene	31000	220	ug/kg	27
Chrysene	37000	220	ug/kg	26
Benzo(b) fluoranthene	-51000 B	220	ug/kg	34
Benzo(k)fluoranthene	PAD	220	ug/kg	44
Benzo(a)pyrene	17000	220	uq/kq	22
Indeno(1,2,3-cd)pyrene	14000	220	ug/kg	22
Dibenzo(a,h)anthracene	5200	220	ug/kg	24
Benzo(ghi)perylene	14000	4 220	ug/kg	21

SURROGATE	PERCENT RECOVERY:	RECOVERY LIMITS
Nitrobenzene-d5	NC, DIL	(27 - 110)
Terphenyl-d14	NC, DIL	(21 - 130)
2-Fluorobiphenyl	NC, DIL	(28 - 108)
2-Fluorophenol	NC, DIL	(28 - 107)
Phenol-d5	NC, DIL	(30 - 112)
2,4,6-Tribromophenol	NC, DIL	(21 - 116)

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: A1-37 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-017 Date Sampled: 03/30/10 08:40 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 100 % Moisture: 38	Work Order #: Date Received Analysis Date Analysis Time Initial Wgt/Vol: Analyst ID Method	04/02/10 04/07/10 19:49 15 g 003200	10:15 MS R Final Inst:	ix: un #: l Wgt/Vol.: rument ID.:	0095277
PARAMETER	DYATT M	REPORTING			
	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	2200	5300	ug/kg	480	
Naphthalene	830 J	1100	ug/kg	93	
Acenaphthylene	5400	1100	ug/kg	120	•
Acenaphthene Fluorene	230 J	1100	ug/kg	1.00	
Phenanthrene	- ND	1100	ug/kg	140	
Anthracene	12000	1100	ug/kg	170	
Fluoranthene	85000 DJ	1100	ug/kg	110	
Pyrene		1100	ug/kg	120	
		1100	ug/kg	110	
••	30000	1100	ug/kg	140	
	52000 Day	1100	ug/kg	130	
		1100	ug/kg	170	
	HD 46000 DYJ	1100	ug/kg	220	
	17000	1100	ug/kg	110	
- 4-	14000—	1100	ug/kg	110	
**	•	1100	ug/kg	120	
benzo/ghr/peryrene	12000	1100	ug/kg	110	
•	PERCENT	RECOVERY			
	•	LIMITS			
Nitrobenzene-d5	NC.DIL	$\frac{27}{(27 - 110)}$			
Terphenyl-d14	NC, DIL	(21 - 130)			
2-Fluorobiphenyl	NC, DIL	(28 - 108)			
2-Fluorophenol	NC, DIL	(28 - 107)			
Phenol-d5	NC, DIL	(30 - 112)			
O A C Mark have 1 may 2		/			

NOTE(S):

NC, DIL

2,4,6-Tribromophenol

(21 - 116)

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A1-38 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-019 Date Sampled: 03/30/10 08:50 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 2 * Moisture: 35		04/02/10 1 04/06/10 20:38 15 g 003200	0:15 MS R Fina Inst	ix: un #: l Wgt/Vol.: rument ID.:	0095277
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	33 J	100	ug/kg	9.2	
Naphthalene	44	21	ug/kg	1.8	
Acenaphthylene	330	21	ug/kg	2.4	
Acenaphthene	19 J	21	ug/kg	2.0	
Fluorene	31	21	ug/kg	2.7	
Phenanthrene	220	21	ug/kg	3.3	
Anthracene	420	21	ug/kg	2.0	
Fluoranthene	1800	21	ug/kg	2.2	
Pyrene	1800	21	ug/kg	2.1	
Benzo (a) anthracene	1300	21	ug/kg	2.6	
Chrysene	1900	21	ug/kg	2.4	
Benzo (b) fluoranthene	2900 JY	21	ug/kg	3.2	
Benzo(k)fluoranthene	400 JY	21	ug/kg	4.2	
Benzo(a)pyrene	1100	21	ug/kg	2.1	
Indeno(1,2,3-cd)pyrene	800	21	ug/kg	2.1	
Dibenzo(a,h)anthracene	240	21	ug/kg	2.3	
Benzo(ghi)perylene	830	21	ug/kg	2.0	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	62	(27 - 110)			
Terphenyl-d14	77	(21 - 130)			
2-Fluorobiphenyl	77	(28 - 108)			
2-Fluorophenol	62	(28 - 107)			
Phenol-d5	64	(30 - 112)			
2,4,6-Tribromophenol	87	(21 - 116)			

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A1-39 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-020 Date Sampled: 03/30/10 08:55 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 4 % Moisture: 33	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 1 04/06/10 21:00 15 g 003200	0:15 MS Ru Final Instra	x: n #: Wgt/Vol.:	0095277 0.5 mL
•	•	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	260	200	ug/kg	18	
Naphthalene	190	40	ug/kg	3.4	
Acenaphthylene	130	40	ug/kg	4.5	
Acenaphthene	300	40	ug/kg	3.8	
Fluorene	ND	40	ug/k g	5.2	
Phenanthrene	3700	40	ug/k g	6.3	
Anthracene	200	40	ug/kg	3.9	
Fluoranthene	1500	40	ug/kg	4.2	
Pyrene	780	40	ug/kg	4.0	
Benzo(a) anthracene	1000	40	ug/kg	5.0	1.
Chrysene	1500	40	ug/kg	4.7	
Benzo(b) fluoranthene	510 JY	40	ug/kg	6.2	
Benzo(k)fluoranthene	ATT 460 IY	40	ug/kg	8.0	
Benzo(a)pyrene	290	40	ug/kg	4.0	
Indeno(1,2,3-cd)pyrene	77	40	ug/kg	4.1	
Dibenzo(a,h)anthracene	120	40	ug/kg	4.4	
Benzo(ghi)perylene	110	40	ug/kg	3.9	
SURROGATE	PERCENT RECOVERY	RECOVERY			
Nitrobenzene-d5	89	LIMITS			
Terphenyl-d14	70	(27 - 110) $(21 - 130)$			
2-Fluorobiphenyl	84	(21 - 130) $(28 - 108)$	4	•	
2-Fluorophenol	71	(28 - 108)			
Phenol-d5	69	(30 - 112)			
2,4,6-Tribromophenol	84	(30 - 112) (21 - 116)			
-, -,	U# /	(21 - 110)			

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: A1-40 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-022 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 2 % Moisture: 41	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 16:08 15 g 430261	MS Ru Final Insti	m #: Wgt/Vol: cument ID:	0096021 0.5 mL
		REPORTING			•
	RESULT	LIMIT	UNITS	MDL	
PARAMETER	23 J	110	ug/kg	10	
Pentachlorophenol	34	23	ug/kg	2.0	
Naphthalene	150	23	ug/kg	2.6	
Acenaphthylene	9.8 J	23	ug/kg	2.2	
Acenaphthene	18 J	23	ug/kg	3.0	
Fluorene Phenanthrene	94	23	ug/kg	3.6	
Anthracene	150	23	ug/kg	2.2	
Fluoranthene	750	23	ug/kg	2.4	
Pyrene	600	23	ug/kg	2.3	
Benzo(a) anthracene	400	23	ug/kg	2.8	
Chrysene	560	23	ug/kg	2.7	
Benzo (b) fluoranthene	560	23	ug/kg	3.6	
Benzo (k) fluoranthene	560	23	ug/kg	4.6	
Benzo(a) pyrene	300	23	ug/kg	2.3	
Indeno (1,2,3-cd) pyrene	200	23	ug/kg	2.3	\$
Dibenzo (a, h) anthracene	70	23	ug/kg	2.5	
Benzo(ghi)perylene	200	23	ug/kg	2.3	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_		
Nitrobenzene-d5	35	(27 - 110)			
Terphenyl-d14	33	(21 - 130)			
2-Fluorobiphenyl	33	(28 - 108)			
2-Fluorophenol	37	(28 - 107)			
Phenol-d5	32	(30 - 112)			
2,4,6-Tribromophenol	41	(21 - 116)	•		
2,4,6-Tribromophenor	طب مان	,	•		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A1-41 (0-6)

GC/MS Semivolatiles

Work Order #...: LXGQV1AC

Matrix..... SOLID

Lot-Sample #: C0D020489-023 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 19.61 % Moisture: 18	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 16:31 15.3 g 430261 SW846 82700 REPORTING	MS Ru Final Instr	Wgt/Vol: ument ID:	0.5 mL
PARAMETER	RESULT	LIMIT	UNITS	71	
Pentachlorophenol	ND DI	790	ug/kg ug/kg	14	
Naphthalene	120 J	160	ug/kg ug/kg	18	
Acenaphthylene	56 ปี	160 160	ug/kg	15	1
Acenaphthene	900	160	ug/kg	21	
Fluorene	520	160	ug/kg	25	
Phenanthrene	12000 1800	160	ug/kg	16	
Anthracene	25000	160	ug/kg	17	
Fluoranthene	13000	160	ug/kg	16	
Pyrene	6400	160	ug/kg	20	
Benzo (a) anthracene	7200	160 .	ug/kg	19	
Chrysene Benzo(b) fluoranthene	7500	160	ug/kg	.25	
Benzo(k) fluoranthene	4900	160	ug/kg	32	
Benzo(a) pyrene	6400	160	ug/kg	16	
Indeno(1,2,3-cd)pyrene	4400	160	ug/kg	16	
Dibenzo(a,h)anthracene	1100	160	ug/kg	18	
Benzo(ghi)perylene	4800 V	160	ug/kg	16	
	PERCENT	RECOVERY			
CITEDOGATE	RECOVERY	LIMITS	_		
SURROGATE Nitrobenzene-d5	NC, DIL	(27 ~ 110)			
Terphenyl-d14	NC, DIL	(21 - 130)			
2-Fluorobiphenyl	NC, DIL	(28 - 108)			
2-Fluorophenol	NC, DIL	(28 - 107			
Phenol-d5	NC, DIL	(30 - 112			
2,4,6-Tribromophenol	NC,DIL	(21 - 116)		

NOTE (S): NC The recovery and/or RPD were not calculated.

Lot-Sample #...: C0D020489-023

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A1-42 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-024 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 1.99 % Moisture: 29	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 16:54 15.1 g 430261	MS Run Final Instru	#: SOLID #: 0096021 Wgt/Vol.: 0.5 mL ment ID.: 732
		REPORTING	IDITEG	MDI
PARAMETER	RESULT	LIMIT	UNITS	MDL 8.4
Pentachlorophenol	ND	93	ug/kg	1.6
Naphthalene	2.5 J	19	ug/kg ug/kg	2.2
Acenaphthylene	3.9 J	19 19	ug/kg ug/kg	1.8
Acenaphthene	ND 3.0 J	19 19	ug/kg ug/kg	2.5
Fluorene		19	ug/kg ug/kg	3.0
Phenanthrene	15 J 4.5 J	19	ug/kg ug/kg	1.8
Anthracene	19	19 19	ug/kg ug/kg	2.0
Fluoranthene	13 J	19 19	ug/kg ug/kg	1.9
Pyrene		19	ug/kg ug/kg	2.4
Benzo (a) anthracene	11 J 12 J	19	ug/kg ug/kg	2.2
Chrysene	12 U _.	19	ug/kg ug/kg	3.0
Benzo (b) fluoranthene	7.9 J	19 19	ug/kg	3.8
Benzo(k) fluoranthene	7.5 J	19	ug/kg	1.9
Benzo (a) pyrene	9.6 U 8.9 J	19	ug/kg	1.9
Indeno (1,2,3-cd) pyrene	ND	19	ug/kg	2.1
Dibenzo(a,h) anthracene Benzo(ghi) perylene	7.9 J	19	ug/kg	1.9
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Nitrobenzene-d5	36	(27 - 110)	•	
Terphenyl-d14	35	(21 - 130)		
2-Fluorobiphenyl	34	(28 - 108)		
2-Fluorophenol	37	(28 - 107)		
Phenol-d5	31	(30 - 112)		
2,4,6-Tribromophenol	38	(21 - 116)		
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: A1-43 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-025 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 3.9 % Moisture: 36	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 17:17 15.4 g 430261	MS Rur Final Instra	Wgt/Vol:	0.5 mL
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	RESULT ND ND 16 J 8.3 J 9.7 J 210 13 J 260 120 29 J 63 71 35 J 27 J 26 J ND 28 J PERCENT	REPORTING LIMIT 200 41 41 41 41 41 41 41 41 41 41 41 41 41	UNITS ug/kg MDL 18 3.5 4.7 3.9 5.4 6.5 4.0 4.3 4.1 5.1 4.8 6.4 8.2 4.1 4.2 4.5 4.0		
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	77 72 74 79 70 81	LIMITS (27 - 110 (21 - 130 (28 - 108 (28 - 107 (30 - 112 (21 - 116	3) 3) 7) 2)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A1-44 (0-6)

GC/MS Semivolatiles

Lot-Sample #: CODO20489-026 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 2 % Moisture: 38	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 17:40 15 g 430261	MS Ru Final Instr	lx: l Wgt/Vol: cument ID:	0096021 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	21 J	110	ug/kg	9.6	·
Naphthalene	120	22	ug/kg	1.8	
Acenaphthylene	62	22	ug/kg	2.5	
Acenaphthene Acenaphthene	9.7 J	22	ug/kg	2.1	
Fluorene	8.6 Л	22	ug/kg	2.8	
Phenanthrene	480	22	ug/kg	3.4	
Anthracene	1.10	22	ug/kg	2.1	
Fluoranthene	630	22	ug/kg	2.3	
	380	22	ug/kg	2.2	
Pyrene Benzo(a) anthracene	240	22	ug/kg	2.7	
Chrysene	280	22	ug/kg	2.6	
Benzo (b) fluoranthene	310	22	ug/kg	3.4	
Benzo(k) fluoranthene	140	22	ug/kg	4.3	
Benzo (a) pyrene	170	22	ug/kg	2.1	
Indeno(1,2,3-cd)pyrene	120	22	ug/kg	2.2	
Dibenzo(a,h)anthracene	41	22	ug/kg	2.4	
Benzo (ghi) perylene	120	22	ug/kg	2.1	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Nitrobenzene-d5	32	(27 - 110)			
Terphenyl-d14	31	(21 - 130)			
2-Fluorobiphenyl	30	(28 - 108)			
2-Fluorophenol	33	(28 - 107)			
Phenol-d5	28 *	(30 - 112)			
2,4,6-Tribromophenol	38	(21 - 116)			
• • •					

NOTE(S):

^{*} Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

Client Sample ID: FIELD DUPLICATE #4

GC/MS Semivolatiles

Lot-Sample #: C0D020489-027 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 1.97 % Moisture: 34	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 18:03 15.2 g 430261	MS Run Final Instru	#	0.5 mL
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene Benzo (ghi) perylene	RESULT 40 J 86 67 6.9 J 8.6 J 230 87 390 260 170 240 290 180 160 140 46 140	REPORTING LIMIT 98 20 20 20 20 20 20 20 20 20 20 20 20 20	UNITS ug/kg	MDL 8.9 1.7 2.3 1.9 2.6 3.2 1.9 2.1 2.0 2.5 2.4 3.1 4.0 2.0 2.0 2.2	
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY 47 49 47 50 45	RECOVERY LIMITS (27 - 110 (21 - 130 (28 - 100 (28 - 100 (30 - 11 (21 - 11	0) 8) 7) 2)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A1-45 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-029 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 0.99 % Moisture: 28	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 18:49 15.1 g 430261	MS Ru Final Instr	Wgt/Vol:	0096021 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	46	ug/kg	4.1	
Naphthalene	8.0 រី	9.2	ug/kg	0.79	
Acenaphthylene	2.8 Ј	9.2	ug/kg	1.1	
Acenaphthene	ND	9.2	ug/kg	0.88	
Fluorene	ND	9.2	ug/kg	1.2	
Phenanthrene	9.7	9.2	ug/kg	1.5	
Anthracene	3.4 J	9.2	ug/kg	0.90	
Fluoranthene	23	9.2	ug/kg	0.98	
Pyrene	16	9.2	ug/kg	0.93	
Benzo(a) anthracene	9.0 J	9.2	ug/kg	1.2	
Chrysene	15	9.2	ug/kg	1.1	
Benzo (b) fluoranthene	1.3	9.2	ug/kg	1.4	
Benzo(k) fluoranthene	6.0 J	9.2	ug/kg	1.9	
Benzo (a) pyrene	8.0 J	9.2	ug/kg	0.92	
Indeno (1,2,3-cd) pyrene	6.1 J	9.2	ug/kg	0.95	
Dibenzo (a, h) anthracene	ND	9.2	ug/kg	1.0	
Benzo (ghi) perylene	6.0 J	9.2	ug/kg	0.92	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Nitrobenzene-d5	51	(27 - 110)			
Terphenyl-d14	50	(21 - 130)			
2-Fluorobiphenyl	48	(28 - 108)		•	
2-Fluorophenol	51	(28 - 107)			
Phenol-d5	45	(30 - 112)			
2,4,6-Tribromophenol	52	(21 - 116)	,		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A1-46 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-030 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 2 % Moisture: 40	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 19:12 15 g 430261	MS Run Final Instru	#: SOLID #: 0096021 Wgt/Vol.: 0.5 mL ment ID.: 732
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	110	ug/kg	9.9
Naphthalene	10 J	22	ug/kg	1.9
Acenaphthylene	15 J	22	ug/kg	2.5
Acenaphthene	2.2 J	22	ug/kg	2.1
Fluorene	3.4 J	22	ug/kg	2.9
Phenanthrene	31	22	ug/kg	3.5
Anthracene	17 J	22	ug/kg	2.2
Fluoranthene	73	22	ug/kg	2.4
Pyrene	56	22	ug/kg	2.2
Benzo (a) anthracene	39	22	ug/kg	2.8
Chrysene	55	22	ug/kg	2.6
Benzo (b) fluoranthene	76	22	ug/kg	3.5
Benzo(k)fluoranthene	26	22	ug/kg	4.5
Benzo(a)pyrene	45	22	ug/kg	2.2
Indeno(1,2,3-cd)pyrene	34 v	22	ug/kg	2.3
Dibenzo(a,h)anthracene	8.2 J	22	ug/kg	2.5
Benzo(ghi)perylene	35	22	ug/kg	2.2
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
Nitrobenzene-d5	40	$\frac{111113}{(27 - 110)}$	****	
Terphenyl-d14	39	(21 - 130)		
2-Fluorobiphenyl	37	(28 - 108)		
2-Fluorophenol	40	(28 - 107)		
Phenol-d5	35	(30 - 112)		
2,4,6-Tribromophenol	44	(21 - 116)		
NOTE(S):		,		

J Estimated result. Result is less than RL.

Client Sample ID: A1-47 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-028 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 1.97 % Moisture: 35	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 18:26 15.2 g 430261	MS Rw Final Instr	wgt/Vol	0096021 0.5 mL
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	RESULT 22 J 49 36 3.3 J 5.7 J 100 43 160 120 90 120 160 72 91 72 23 69	REPORTING LIMIT 100 20 20 20 20 20 20 20 20 20 20 20 20 2	UNITS ug/kg	MDL 9.0 1.7 2.3 1.9 2.7 3.2 2.0 2.2 2.0 2.5 2.4 3.2 4.1 2.0 2.1 2.2 2.0	
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY 34 31 31 34 31 34 31	LIMITS (27 - 110 (21 - 130 (28 - 105 (30 - 112 (21 - 116)) 3) 7) 2) ·		

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: Al-48 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-031			Matri	x SOLID
Date Sampled: 03/30/10 10:50	Date Received:	04/02/10	10:15 MS Ru	n # 0096021
Prep Date: 04/06/10	Analysis Date:			
Prep Batch #: 0096045	Analysis Time:	20:13		
Dilution Factor: 3	Initial Wgt/Vol:	15 g	Final	Wgt/Vol: 0.5 mL
* Moisture: 23	Analyst ID:	003200		ument ID.:: 731
	Method	SW846 827	0C	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	130	ug/kg	12
Naphthalene	20 J	26	ug/kg	2.2
Acenaphthylene	18 J	26	ug/kg	3.0
Acenaphthene	7.1 J	.26	ug/kg	2.5
Fluorene	5.8 J	26	ug/kg	3.4
Phenanthrene	100	26	ug/kg	4.1
Anthracene	30	26	ug/kg	2.5
Fluoranthene	200	26	ug/kg	2.8
Pyrene	130	26	ug/kg	2.6
Benzo(a) anthracene	89	26	ug/kg	3.3
Chrysene	110	26	ug/kg	3.1
Benzo(b) fluoranthene	150	26	ug/kg	4.1
Benzo(k) fluoranthene	46	26	ug/kg	5.3
Benzo(a)pyrene	89	26	ug/kg	2.6
Indeno(1,2,3-cd)pyrene	76	26	ug/kg	2.7
Dibenzo(a,h)anthracene		.26	ug/kg	2.9
Benzo(ghi)perylene	82	26	ug/kg	2.6
		RECOVERY		
		LIMITS		
Nitrobenzene-d5	71	(27 - 110)		
Terphenyl-d14	56	(21 - 130)		

(28 - 108)

(28 - 107)

(30 - 112)

(21 - 116)

57

62

64

65

NOTE(S):

Phenol-d5

Results and reporting limits have been adjusted for dry weight.

2,4,6-Tribromophenol

2-Fluorobiphenyl

2-Fluorophenol

J Estimated result. Result is less than RL.

Client Sample ID: A2-11 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-003 Date Sampled: 03/29/10 15:50 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 10 % Moisture: 38		04/02/10 1 04/06/10 13:43 15 g 003200	0:15 MS Run Final Instru	Wgt/Vol:	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	3100	530	ug/kg	48	
Naphthalene	180	110	ug/kg	9.3	
Acenaphthylene	1600	110	ug/kg	12	
Acenaphthene	93 Ј	110	ug/kg	10	
Fluorene	110	1.10	ug/kg	14	
Phenanthrene	540	110	ug/kg	17	
Anthracene	1900	110	ug/kg	11	
Fluoranthene	4100	110	ug/kg	11	
Pyrene	4500	110	ug/kg	11	
Benzo(a) anthracene	3100	110	ug/kg	13	
Chrysene	4300	110	ug/kg	13	
Benzo(b) fluoranthene	9700	110	ug/kg	17	
Benzo(k)fluoranthene	# 8800 TY	110	ug/kg	22	
Benzo(a)pyrene	4200	110	ug/kg	11	
Indeno(1,2,3-cd)pyrene	3300	110	ug/kg	11	
Dibenzo(a,h)anthracene	1000	110	ug/kg	12	
Benzo(ghi)perylene	3400	110	ug/kg	11	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	73	(27 - 110)			
Terphenyl-d14	78	(21 - 130)			
2-Fluorobiphenyl	82	(28 - 108)			
2-Fluorophenol	76	(28 - 107)			
Phenol-d5	68	(30 - 112)			
2,4,6-Tribromophenol	80	(21 - 116)			

NOTE(S):

I Estimated result. Result is less than RL.

Client Sample ID: A2-12 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-001 Date Sampled: 03/29/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 50 % Moisture: 32	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 13:21 15 g 003200	MS Run Final V Instru	#: #ode in the state of the	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	14000 DI	2400	ug/kg	220	
Naphthalene	910	500	ug/kg	42	
Acenaphthylene	8900	500	ug/kg	56	·
Acenaphthene	350 ਹ	500	ug/kg	47	
Fluorene	370 J	500	ug/kg	65	
Phenanthrene	1600	500	ug/kg	78	
Anthracene	11000	500	ug/kg	48	
Fluoranthene	14000	500	ug/kg	53	
Pyrene	19000	500	ug/kg	50	
Benzo (a) anthracene	19000	500	ug/kg	62	
Chrysene	28000	500	ug/kg	59	
Benzo (b) fluoranthene	47000	500	ug/kg	77	
Benzo (k) fluoranthene	22000	500	ug/kg	100	
Benzo (a) pyrene	28000	500	ug/kg	49	
Indeno(1,2,3-cd)pyrene	21000	500	ug/kg	51	
Dibenzo(a,h)anthracene	6800	500	ug/kg	55	
Benzo (ghi) perylene	21000 \	500	ug/kg	49	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	NC, DIL	(27 - 110)			
Terphenyl-d14	NC, DIL	(21 - 130)	•		
2-Fluorobiphenyl	NC, DIL	(28 - 108)			
2-Fluorophenol	NC, DIL	(28 - 107)			
Phenol-d5	NC, DIL	(30 - 112)			
2,4,6-Tribromophenol	NC, DIL	(21 - 116)			

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A2-13 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-004 Date Sampled: 03/29/10 15:20 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 2 * Moisture: 29		04/02/10 10: 04/06/10 14:06 15 g	15 MS Run Final	#	0095277 0.5 mL
	Method:				,55
		REPORTING			
PARAMETER	RESULT	LIMIT U	NITS	MDL	
Pentachlorophenol	78 J	94 u	ıg/kg	8.5	
Naphthalene	20 J	19 v	g/kg	1.6	
Acenaphthylene	81	19 u	g/kg	2.2	
Acenaphthene	6.4 J	19 u	g/kg	1.8	
Fluorene	ND UJ	19 u	g/kg	2.5	
Phenanthrene	86 J	19 u	g/kg	3.0	
Anthracene	91	19 u	g/kg	1.9	
Fluoranthene	260 ゴ	19 u	g/kg	2.0	
Pyrene	230	19 u	g/kg	1.9	
Benzo (a) anthracene	140 5	19 u	g/kg	2.4	
Chrysene	220	19 u	g/kg	2.3	
Benzo(b) fluoranthene	400 IY	19 u	g/kg	3.0	
Benzo(k) fluoranthene	** 370 JY		g/kg	3.8	
Benzo(a)pyrene	180 丁		g/kg	1.9	
Indeno(1,2,3-cd)pyrene	180 J 130 J	19 u	g/kg	1.9	
Dibenzo(a,h)anthracene	44		g/kg	2.1	
Benzo(ghi)perylene	150 I	19 u	g/kg	1.9	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	T.TMTTS			

MITS
7 - 110)
1 - 130)
8 - 108)
8 - 107)
0 - 112)
1 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD DUPLICATE #1

GC/MS Semivolatiles

Lot-Sample #: C0D020489-005 Date Sampled: 03/29/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 1.97 % Moisture: 34	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 14:28 15.2 g 003200	MS Rui Final Instr	Wgt/Vol:	0095277
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	RESULT 61 J 160 J 280 J 33 81 J 1200 J 170 1400 J 1100 J 440 J 620 720 280 570 J 400 J 100 490 J	REPORTING LIMIT 99 20 20 20 20 20 20 20 20 20 20 20 20 20	UNITS ug/kg	MDL 8.9 1.7 2.3 1.9 2.6 3.2 2.0 2.1 2.0 2.5 2.4 3.1 4.0 2.0 2.1 2.2 2.0	
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY 57 68 66 55 59 73	RECOVERY LIMITS (27 - 110 (21 - 130 (28 - 100 (28 - 100 (30 - 112 (21 - 110)) 3) 7) 2)		

NOTE(S):

J Estimated result, Result is less than RL.

Client Sample ID: A2-14 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-006 Date Sampled: 03/29/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 49.34 % Moisture: 20	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 14:51 15:2 g 003200	MS Run Final	#: Wgt/Vol:	0095277
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	RESULT 71000 PJ 940 6100 260 J 390 J 2900 8400 18000 23000 17000 24000 38000 18000 16000 13000 4900 12000	2000 420 420 420 420 420 420 420 420 420	INITS Ig/kg MDL 180 36 47 40 54 66 40 44 42 52 49 65 84 41 43 46 41		
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2.4.6-Tribromophenol	PERCENT RECOVERY NC, DIL NC, DIL NC, DIL NC, DIL NC, DIL NC, DIL	RECOVERY LIMITS (27 - 110) (21 - 130) (28 - 108) (28 - 107) (30 - 112) (21 - 116)			

NOTE(S):

2,4,6-Tribromophenol

NC The recovery and/or RPD were not calculated.

Dil. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A2-15 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-007 Date Sampled: 03/29/10 15:10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 50 * Moisture: 29	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 10 04/06/10 15:14 15 g 003200	:15 MS Run Final V Instru	#: #gt/Vol: ment ID:	0095277
		REPORTING			
PARAMETER	RESULT	LIMIT U	JNITS	MDL	
Pentachlorophenol	21000	2300	ug/kg	210	
Naphthalene	2300	470 t	ug/kg	41	
Acenaphthylene	17000	470 i	ıg/kg	54	
Acenaphthene	960	470	ıg/k g	45	
Fluorene	1400	470 ı	ıg/kg	62	
Phenanthrene	4100	470 t	ıg/kg	75	
Anthracene	24000	470 1	ıg/kg	46	
Fluoranthene	23000	470 τ	ıg/kg	50	
Pyrene	23000	470 t	ıg/k g	48	
Benzo(a) anthracene	20000	470 ı	ıg/kg	59	
Chrysene	27000	470 1	ıg/kg	56	
Benzo(b) fluoranthene	91000	470 ι	ıg/kg	74	
	ME 83000 Y	470 t	ıg/kg	95	
Benzo(a) pyrene	39000	470 u	ıg/kg	47	
Indeno(1,2,3-cd)pyrene	36000	470 t	ıg/kg	48	
	13000	47 0 t	ıg/kg	52	
Benzo(ghi)perylene	34000 ^l	470 u	ıg/kg	47	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	NC, DIL	(27 - 110)
Terphenyl-d14	NC, DIL	(21 - 130)
2-Fluorobiphenyl	NC, DIL	(28 - 108)
2-Fluorophenol	NC, DIL	(28 - 107)
Phenol-d5	NC, DIL	(30 - 112)
2,4,6-Tribromophenol	NC, DIL	(21 - 116)

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: A2-16 (0-6)

GC/MS Semivolatiles

	oo mount offer H			-v
Date Sampled: 03/29/10 15	:00 Date Received	: 04/02/10	10:15 MS R	m # 0095277
Prep Date: 04/05/10	Analysis Date		•	
Prep Batch #: 0095430	Analysis Time	: 15:37		
Dilution Factor: 50	Initial Wgt/Vol	: 15 q	Final	Wgt/Vol: 0.5 mL
* Moisture: 43	Analyst ID	003200		rument ID.:: 733
	Method	: SW846 827	70C	
		REPORTING	}	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	27000	2900	ug/kg	260
Naphthalene	2000	590	ug/kg	51
Acenaphthylene	15000	590	ug/kg	67
Acenaphthene	690	590	ug/kg	56
Fluorene	1200	590	ug/kg	77
Phenanthrene	3100	590	ug/kg	93
Anthracene	27000	590	ug/kg	57
Fluoranthene	16000	590	ug/kg	63
Pyrene	18000	590	ug/kg	59
Benzo (a) anthracene	16000	590	ug/kg	73
Chrysene	23000	590	ug/kg	70
Benzo(b) fluoranthene	79000 FY	590	ug/kg	92
Benzo(k) fluoranthene	XID 72000 Y	590	ug/kg	120
Benzo (a) pyrene	28000	590	ug/kg	59
Indeno(1,2,3-cd)pyrene	30000	590	ug/kg	60
Dibenzo(a,h)anthracene	8700	.590	ug/kg	65 [.]

590

ug/kg

58

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	NC, DIL	(27 - 110)
Terphenyl-d14	NC, DIL	(21 - 130)
2-Fluorobiphenyl	NC, DIL	(28 - 108)
2-Fluorophenol	NC, DIL	(28 - 107)
Phenol-d5	NC, DIL	(30 - 112)
2,4,6-Tribromophenol	NC, DIL	(21 - 116)

29000

Lot-Sample #...: C0D020489-008 Work Order #...: LXGP61AC

NOTE(S):

Benzo(ghi)perylene

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: A2-17 (0-6)

GC/MS Semivolatiles

<pre>Lot-Sample #: C0D020489-009 Date Sampled: 03/29/10 14:40 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 40 % Moisture: 40</pre>		04/02/10 1 04/06/10 16:01 15 g 003200	10:15 MS Ru Final Instr	x: n #: Wgt/Vol.: ument ID.:	0095277 0.5 mL
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	40000 DT	2200	ug/kg	MDL. 200	
Naphthalene	1400	440	ug/kg ug/kg	200 38	
Acenaphthylene	7800	440	ug/kg ug/kg	50 51	
Acenaphthene	470	440	ug/kg ug/kg	42	
Fluorene	610	440	ug/kg	58	•
Phenanthrene	2800	440	ug/kg	70	
Anthracene	12000	440	ug/kg	43	
Fluoranthene	19000	440	ug/kg	47	
Pyrene	19000	440	ug/kg	45	
Benzo (a) anthracene	12000	440	ug/kg	55	
Chrysene	16000	440	ug/kg	53	
Benzo(b) fluoranthene	41000	440	ug/kg	69	
Benzo(k) fluoranthene	AHD 37000 Y	440	ug/kg	89	
Benzo(a)pyrene	15000	440	ug/kg	44	
Indeno(1,2,3-cd)pyrene	15000	440	ug/kg	46	
Dibenzo(a,h)anthracene	4800	440	ug/kg	49	
Benzo(ghi)perylene	15000 9	440	ug/kg	44	
SURROGATE Nitrobenzene-d5	PERCENT RECOVERY	RECOVERY LIMITS			
Terphenyl-d14	NC, DIL	(27 - 110)			, "
2-Fluorobiphenyl	NC,DIL NC,DIL	(21 - 130)			
S-LTHOTONITHIGHAT	MC, DIII	(28 ~ 108)			

(28 - 107)

(30 - 112)

(21 - 116)

NOTE(S):

Phenol-d5

2-Fluorophenol

2,4,6-Tribromophenol

NC, DIL

NC, DIL

NC, DIL

NC The recovery and/or RPD were not calculated.

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A2-18 (0-6)

GC/MS Semivolatiles

Lot-Sample #:	C0D020489-010	Work Order #:	LXGP91AC	Matrix:	SOLID
Date Sampled:	03/29/10 14:30	Date Received:	04/02/10 10:15	MS Run #:	0095277
Prep Date:	04/05/10	Analysis Date:	04/06/10		
Prep Batch #:	0095430	Analysis Time:	17:12		
Dilution Factor:	4	<pre>Initial Wgt/Vol:</pre>	15 g	Final Wgt/Vol:	0.5 mL
* Moisture:	28	Analyst ID:	003200	Instrument ID:	733
		Method .	SWR46 92700		

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	2300	180	ug/kg	16
Naphthalene	100	37	ug/kg	3.2
Acenaphthylene	1300	37	ug/kg	4.2
Acenaphthene	51	37	ug/kg	3.5
Fluorene	81	37	ug/kg	4.9
Phenanthrene	550	37	ug/kg	5.9
Anthracene	1400	37	ug/kg	3.6
Fluoranthene	4200	37	ug/kg	3.9
Pyrene	4100	37	ug/kg	3.7
Benzo(a)anthracene	2800	37	ug/kg	4.6
Chrysene	4400	37	ug/kg	4.4
Benzo(b) fluoranthene	6000	37	ug/kg	5.8
Benzo(k) fluoranthene	2600	37	ug/kg	7.4
Benzo(a)pyrene	3200	37	ug/kg	3.7
Indeno(1,2,3-cd)pyrene	2700	37	ug/kg	3.8
Dibenzo(a,h)anthracene	960	37	ug/kg	4.1
Benzo(ghi)perylene	2700	37	ug/kg	3.7

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	83	(27 - 110)
Terphenyl-d14	87	(21 - 130)
2-Fluorobiphenyl	91	(28 - 108)
2-Fluorophenol	79	(28 - 107)
Phenol-d5	80	(30 - 112)
2,4,6-Tribromophenol	94	(21 - 116)

NOTE(S):

Client Sample ID: A2-19 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-011 Date Sampled: 03/29/10 15:40 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 49.34 Moisture: 37		04/02/10 1 04/06/10 17:36 15.2 g 003200	.0:15 MS Run Final Instru	Wgt/Vol:	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	22000 DJ	2600	ug/kg	230	
Naphthalene	1200	520	ug/kg	45	
Acenaphthylene	8900	520	ug/kg	60	
Acenaphthene	570	520	ug/kg	50	
Fluorene	3100	520	ug/kg	69	
Phenanthrene	6000	520	ug/kg	83	
Anthracene	32000	520	ug/kg	51	
Fluoranthene	11000	520	ug/kg	56	
Pyrene	11000	520	ug/kg	53	
Benzo(a)anthracene	8000	520	ug/kg	65	
Chrysene	21000	520	ug/kg	62	
Benzo(b) fluoranthene	35000	520	ug/kg	82	
Benzo(k) fluoranthene	13000	520	ug/kg	110	
Benzo(a)pyrene	17000	520	ug/kg	52	
Indeno(1,2,3-cd)pyrene	16000	520	ug/kg	54	
Dibenzo(a,h)anthracene	5700	520	ug/kg	58	
Benzo(ghi)perylene	15000	·520	ug/kg	52	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	NC, DIL	(27 - 110)			
Terphenyl-d14	NC, DIL	(21 - 130)			
2-Fluorobiphenyl	NC, DIL	(28 - 108)			
2-Fluorophenol	NC, DIL	(28 - 107)			
Phenol-d5	NC, DIL	(30 - 112)			
2,4,6-Tribromophenol	NC, DIL	(21 - 116)			

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: FIELD DUPLICATE #2

GC/MS Semivolatiles

Lot-Sample #: C0D020489-012 Date Sampled: 03/29/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 39.73 % Moisture: 37	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 10:1 04/06/10 17:59 15.1 g 003200	5 MS Run Final 1	#: #gt/Vol: nent ID:	0095277 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT UN	ITS	MDL	
Pentachlorophenol	20000 75	2100 ug	/kg	190	
Naphthalene	1100	420 ug	/kg	36	
Acenaphthylene	9200	420 ug	/kg	48	
Acenaphthene	570	420 ug	/kg	40	
Fluorene	1500	420 ug	/kg	55	
Phenanthrene	3000	420 ug	/kg	67	
Anthracene	26000	420 ug	/kg	41	
Fluoranthene	11000	420 ug	/kg	45	
Pyrene	11000		/kg	43	
Benzo(a) anthracene	7600	420 ug	/kg	53	
Chrysene	17000		/kg	50	
Benzo(b) fluoranthene	43000	420 ug	/kg	66	
Benzo(k)fluoranthene	39000 Y	420 ug	/kg	85	
Benzo(a)pyrene	17000	420 ug	/kg	42	
Indeno(1,2,3-cd)pyrene	16000		/kg	43	•
Dibenzo(a,h)anthracene	5100	420 ug,	/kg	47	
Benzo(ghi)perylene	16000 ⁷⁶	420 ug	/kg	42	
	DEDCENT	DEICOTEDU			

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	NC, DIL	(27 - 110)		
Terphenyl-d14	NC, DIL	(21 - 130)		
2-Fluorobiphenyl	NC, DIL	(28 - 108)		
2-Fluorophenol	NC, DIL	(28 - 107)		
Phenol-d5	NC, DIL	(30 ~ 112)		
2,4,6-Tribromophenol	NC, DIL	(21 - 116)		

NOTE(S):

 $^{{\}hbox{NC}}\ {\hbox{The recovery and/or RPD were not calculated}}.$

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A3-18 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-036 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 0.97 % Moisture: 26	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 20:39 15.4 g 430261	MS Ru Final Instr	<pre>%: SOLe n #: 009 Wgt/Vol.:: 0.5 ument ID.:: 731</pre>	6021 mL
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(ghi) perylene	RESULT ND 1.6 J 4.7 J 1.3 J 1.6 J 9.3 5.8 J 22 16 11 13 22 7.4 J 12 12 3.1 J 14	REPORTING LIMIT 44 8.8 8.8 8.8 8.8 8.8 8.8 8.8	ug/kg	MDL 3.9 0.76 1.0 0.84 1.2 1.4 0.86 0.94 0.89 1.1 1.0 1.4 1.8 0.88 0.91 0.98 0.91	
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY 46 44 42 47 43	LIMITS (27 - 110 (21 - 130 (28 - 108 (28 - 107 (30 - 112 (21 - 116)) 3) 7) 2)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A3-19 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-037	Work Order #	.: LXGRH1AC	Matri	x	SOLID
Date Sampled: 03/30/10	Date Received.	.: 04/02/10	MS Ru	n #:	0096021
Prep Date: 04/06/10	Analysis Date.	.: 04/06/10			
Prep Batch #: 0096045	Analysis Time.	.: 21:01			
Dilution Factor: 2	Initial Wgt/Vol	l: 15 g	Final	Wgt/Vol:	0.5 mL
% Moisture: 37	Analyst ID	.: 430261	Instr	ument ID:	731
	Method	.: SW846 8270	C		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	67 Ј	1.1.0	ug/kg	9.5	
Naphthalene	9.3 J	21	ug/kg	1.8	
Acenaphthylene	120	21	ug/kg	2.4	
Acenaphthene	7.8 Ј	21	ug/kg	2.0	
Fluorene	13 J	21	ug/kg	2.8	
Phenanthrene	46	21	ug/kg	3.4	
Anthracene	170	21	ug/kg	2.1	
Fluoranthene	210	21	ug/kg	2.3	
Pyrene	190	21	ug/kg	2.2	
Benzo (a) anthracene	160	21	ug/kg	2.7	
Chrysene	180	21	ug/kg	2.5	•
Benzo (b) fluoranthene	290	21	ug/kg	3.3	ř
Benzo(k) fluoranthene	100	21	ug/kg	4.3	
Benzo (a) pyrene	150	21	ug/kg	2.1	
Indeno(1,2,3-cd)pyrene	190	21	ug/kg	2.2	
Dibenzo(a,h)anthracene	56	21	ug/kg	2.4	
Benzo(ghi)perylene	180 7	21	ug/kg	2.1	
	PERCENT	RECOVERY			·
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	41	(27 - 110)	•		
Terphenyl-d14	33	(21 - 130)			
2-Fluorobiphenyl	37	(28 - 108)			
2-Fluorophenol	43	(28 - 107)			
Phenol-d5	39	(30 - 112)		*	
2,4,6-Tribromophenol	39	(21 - 116)			
NOTE (S):					

Results and reporting limits have been adjusted for dry weight. $I \quad \hbox{Estimated result. Result is less than RL}.$

Client Sample ID: A3-20 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-034 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 2 % Moisture: 43	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 19:56 15 g 430261	MS Run Final Instru	#: Wgt/Vol:	0096021
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene Benzo (ghi) perylene	RESULT 37 J 18 J 64 8.1 J 9.7 J 74 74 220 150 110 130 210 97 120 130 35 150	REPORTING LIMIT 120 24 24 24 24 24 24 24 24 24 24 24 24 24	UNITS ug/kg MDL 11 2.0 2.7 2.3 3.1 3.7 2.3 2.5 2.4 3.0 2.8 3.7 4.8 2.4 2.4 2.6 2.3		
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY 54 46 51 55 51 55	LIMITS (27 - 11 (21 - 13 (28 - 10 (28 - 10 (30 - 11 (21 - 11	0) 8) 7) .2)		

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD DUPLICATE #5

GC/MS Semivolatiles

Matrix....: SOLID

Lot-Sample #...: C0D020489-035 Work Order #...: LXGRF1AC

Date Sampled: 03/30/10	Date Received:		MS Run	# 009602
Prep Date: 04/06/10	Analysis Date:	•		
Prep Batch #: 0096045	Analysis Time:			
Dilution Factor: 1.95	Initial Wgt/Vol:			Wgt/Vol: 0.5 mL
% Moisture: 46	Analyst ID:			ment ID: 731
	Method:	SW846 8270	С	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	53 J	120	ug/kg	11
Naphthalene	16 J	24	ug/kg	2.1
Acenaphthylene	70	24	ug/kg	2.7
Acenaphthene	7.9 J	24	ug/kg	2.3
Fluorene	11 J	24	ug/kg	3.2
Phenanthrene	73	24	ug/kg	3.8
Anthracene	82	24	ug/kg	2.3
Fluoranthene	230	24	ug/kg	2.6
Pyrene	160 二	24	ug/kg	2.4
Benzo (a) anthracene	110	24	ug/kg	3.0
Chrysene	150	24	ug/kg	2.9
Benzo(b) fluoranthene	250	24	ug/kg	3.8
Benzo(k) fluoranthene	84	24	ug/kg	4.8
Benzo(a) pyrene	130	24	ug/kg	2.4
Indeno(1,2,3-cd)pyrene	160	24	ug/kg	2.5
Dibenzo (a, h) anthracene	35	24	ug/kg	2.7
Benzo(ghi)perylene	180	24	ug/kg	2.4
•	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	40	(27 - 110)	•	
Terphenyl-d14	33	(21 - 130)		
2-Fluorobiphenyl	39	(28 - 108)		
2-Fluorophenol	41	(28 - 107)		
Phenol-d5	38	(30 - 112)		
PHEHOT-05	43	(21 - 116)		

J Estimated result, Result is less than RL.

Client Sample ID: A3-21 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-040 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 20 % Moisture: 36	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 22:05 15 g 430261	MS Rui Final Instri	wgt/Vol	: 0.5 mL
PARAMETER Pentachlorophenol Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(ghi) perylene	RESULT 18000 3800 4400 860 920 15000 9200 25000 13000 9400 11000 21000 6100 5100 10000 ND 8600	REPORTING LIMIT 1000 210 210 210 210 210 210 210 210 21	UNITS ug/kg MDL 93 18 24 20 28 33 20 22 21 26 25 33 42 21 22 23 21		
SURROGATE Nitrobenzene-d5 Terphenyl-d14 2-Fluorobiphenyl 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	PERCENT RECOVERY NC,DIL NC,DIL NC,DIL NC,DIL NC,DIL NC,DIL	RECOVERY LIMITS (27 - 110 (21 - 130 (28 - 108 (28 - 107 (30 - 112 (21 - 116)))		

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A3-22 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-039 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 19.87 % Moisture: 59	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 21:44 15.1 g 430261	MS Run Final Instru	#: SOLID #: 0096021 Wgt/Vol.: 0.5 mL ment ID.: 731
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	1200 J DA	1600	ug/kg	1.50
Naphthalene	110 Ј	330	ug/kg	28
Acenaphthylene	1500	330	ug/kg	37
Acenaphthene	120 J	330	ug/kg	31
Fluorene	160 J	330	ug/kg	43
Phenanthrene	610	330	ug/kg	52
Anthracene	2200	330	ug/kg	32
Fluoranthene	2400	330	ug/kg	35
Pyrene	1800	330	ug/kg	33
Benzo (a) anthracene	1300	330	ug/kg	41
Chrysene	1500	330	ug/kg	39
Benzo (b) fluoranthene	2700	336	ug/kg	51
Benzo(k) fluoranthene	1000	330	ug/kg	66
Benzo(a)pyrene	1100	330	ug/kg	33
Indeno (1,2,3-cd) pyrene	2400	330	ug/kg	34
Dibenzo(a,h)anthracene	600	330	ug/kg	36
Benzo(ghi)perylene	2600	330	ug/kg	32
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	NC, DIL	(27 - 110)		
Terphenyl-d14	NC, DIL	(21 - 130)		
2-Fluorobiphenyl	NC, DIL	(28 - 108)		
2-Fluorophenol	NC, DIL	(28 - 107)		
Phenol-d5	NC, DIL	(30 - 112)		
2,4,6-Tribromophenol	NC, DIL	(21 - 116)		

NOTE(S):

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

J Estimated result. Result is less than RL.

Client Sample ID: A3-23 (0-6)

GC/MS Semivolatiles

		Work Order #:		Matrix:	SOLID
Date Sampled:	03/30/10 11:25	Date Received:	04/02/10 10:15	MS Run #:	0096021
Prep Date:	04/06/10	Analysis Date:	04/07/10		
Prep Batch #:	0096045	Analysis Time:	20:36		
Dilution Factor:	4.9	<pre>Initial Wgt/Vol:</pre>	15.3 g	Final Wgt/Vol:	0.5 mL
<pre>% Moisture:</pre>	38	Analyst ID:		Instrument ID:	
		Method:	SW846 8270C		

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	570	260	ug/kg	24
Naphthalene	120	53	ug/kg	4.5
Acenaphthylene	1100	53	ug/kg	6.0
Acenaphthene	47 J	53	ug/kg	5.0
Fluorene	79	53	ug/kg	6.9
Phenanthrene	570	53	ug/kg	8.4
Anthracene	1200	53	ug/kg	5.1
Fluoranthene	1800	53	ug/kg	5.6
Pyrene	1400	53	ug/kg	5.3
Benzo(a)anthracene	1000	53	ug/kg	6.6
Chrysene	1800	53	ug/kg	6.3
Benzo (b) fluoranthene	4100	53	ug/kg	8.3
Benzo(k)fluoranthene	AND 3600 IY	53 .	ug/kg	11
Benzo(a)pyrene	1600	53	ug/kg	5.3
Indeno(1,2,3-cd)pyrene	2000	53	ug/kg	5.4
Dibenzo(a,h)anthracene	470	53	ug/kg	5.8
Benzo(ghi)perylene	1900	53	ug/kg	5.2

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	74	(27 - 110)
Terphenyl-d14	61	(21 - 130)
2-Fluorobiphenyl	66	(28 - 108)
2-Fluorophenol	69	(28 - 107)
Phenol-d5	72	(30 - 112)
2,4,6-Tribromophenol	75	(21 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A3-24 (0-6)

GC/MS Semivolatiles

Lot-Sample #: COD020489-041 Date Sampled: 03/30/10 Prep Date: 04/06/10 Prep Batch #: 0096045 Dilution Factor: 19.74 % Moisture: 48	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 22:26 15.2 g 430261	MS Run Final Instru	#: SOLI #: 0096 Wgt/Vol.: 0.5	021
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	_
Pentachlorophenol	2600	1300	ug/kg	110	
Naphthalene	700	260	ug/kg	22	
Acenaphthylene	10000	260	ug/kg	29	
Acenaphthene	420	260	ug/kg	24	
Fluorene	570	260	ug/kg	33	
Phenanthrene	3200	260	ug/kg	.40	
Anthracene	7800	260	ug/kg	25	
Fluoranthene	25000	260	ug/kg	27	
Pyrene	15000	260	ug/kg	26	
Benzo (a) anthracene	17000	260	ug/kg	32	
Chrysene	19000	260	ug/kg	30	
Benzo (b) fluoranthene	45000	260	ug/kg	40	
Benzo(k)fluoranthene	25000	260	ug/kg	51	
Benzo(a)pyrene	28000	260	ug/kg	25	
Indeno(1,2,3-cd)pyrene	26000	260	ug/kg	26	
Dibenzo(a,h)anthracene	ND	260	ug/kg	28	
Benzo (ghi) perylene	24000	260	ug/kg	25	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	NC, DIL	(27 - 110)			
Terphenyl-d14	NC, DIL	(21 - 130)	•		
2-Fluorobiphenyl	NC, DIL	(28 - 108)			
2-Fluorophenol	NC, DIL	(28 - 107)			
Phenol-d5	NC, DIL	(30 - 112)			
2,4,6-Tribromophenol	NC, DIL	(21 - 116)			
NOTE(S):					

NC The recovery and/or RPD were not calculated.

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: A4-1 (0-6)

GC/MS Semivolatiles

	03/31/10 10:50 04/06/10	Work Order #: Date Received: Analysis Date: Analysis Time:	04/02/10 10:15 04/07/10	Matrix: MS Run #:	
Dilution Factor: * Moisture:	5 33	<pre>Initial Wgt/Vol: Analyst ID: Method:</pre>	15 g 003200	Final Wgt/Vol: Instrument ID:	
			REPORTING		

PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	250	ug/kg	22
Naphthalene	ND	50	ug/kg	4.3
Acenaphthylene	35 ปี	50	ug/kg	5.7
Acenaphthene	20 J	50	ug/kg	4.8
Fluorene	14 J	50	ug/kg	6.6
Phenanthrene	190	50	ug/kg	7.9
Anthracene	62	50	ug/kg	4.9
Fluoranthene	560	50	ug/kg	5.3
Pyrene	360	50	ug/kg	5.0
Benzo(a) anthracene	240	50	ug/kg	6.2
Chrysene	310	50	ug/kg	5.9
Benzo(b) fluoranthene	540 420	50	ug/kg	7.8
Benzo(k) fluoranthene	ND 140	50	ug/kg	10
Benzo(a)pyrene	260	50	ug/kg	5.0
Indeno(1,2,3-cd)pyrene	240	'50	ug/kg	5.1
Dibenzo(a,h)anthracene	58	50	ug/kg	5.5
Benzo(ghi)perylene	240	50	ug/kg	4.9

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	61	(27 - 110)
Terphenyl-d14	50	(21 - 130)
2-Fluorobiphenyl	56	(28 - 108)
2-Fluorophenol	57	(28 - 107)
Phenol-d5	62	(30 - 112)
2,4,6-Tribromophenol	58	(21 - 116)

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: A4-2 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-059 Date Sampled: 03/31/10 10:5 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.97 % Moisture: 29		04/02/10 1 04/07/10 19:01 15.4 g 003200	10:15 MS Ru Final Instr	<pre>x: SOLID n #: 0096022 Wgt/Vol.: 0.5 mL ument ID.: 731</pre>
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	45	ug/kg	4.1
Naphthalene	56	9.2	ug/kg	0.79
Acenaphthylene	35	9.2	ug/kg	1.0
Acenaphthene	10	9.2	ug/kg	0.88
Fluorene	7.6 J	9.2	ug/kg	1.2
Phenanthrene	150	9.2	ug/kg	1.5
Anthracene	36	9.2	ug/kg	0.89
Fluoranthene	220	9.2	ug/kg	0.98
Pyrene	120	9.2	ug/kg	0.92
Benzo (a) anthracene	77	9.2	ug/kg	1.1
Chrysene	110	9.2	ug/kg	1.1
Benzo(b) fluoranthene	160 140	9.2	ug/kg	1.4
Benzo(k)fluoranthene	JUD 36	9.2	ug/kg	1.8
Benzo(a)pyrene	85	9.2	ug/kg	0.91
Indeno(1,2,3-cd)pyrene	84	9.2	ug/kg	0.94
Dibenzo(a,h)anthracene	22	9.2	ug/kg	1.0
Benzo(ghi)perylene	92	9.2	ug/kg	0.91
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	81	(27 - 110)		
Terphenyl-d14	64	(21 - 130)		
2-Fluorobiphenyl	74	(28 - 108)		
2-Fluorophenol	71	(28 - 107)		
Phenol-d5	72	(30 - 112)		

84

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

2,4,6-Tribromophenol

(21 - 116)

J Estimated result. Result is less than RL.

Client Sample ID: A4-3 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-060 Date Sampled: 03/31/10 11:00 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 1 % Moisture: 28		04/02/10 04/07/10 19:25 15 g 003200	10:15 MS Ru Final Instra	<pre>x: SOLID n #: 0096022 Wgt/Vol.: 0.5 mL ment ID.: 731</pre>
	*	REPORTING	-	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	46	ug/kg	4.1
Naphthalene	ND	9.3	ug/kg	0.79
Acenaphthylene	3.2 J	9.3	ug/kg	1.1
Acenaphthene	ND	9.3	ug/kg	0.89
Fluorene	ND	9.3	ug/kg	1.2
Phenanthrene	1.5	9.3	ug/kg	1.5
Anthracene	4.3 J	9.3	ug/kg	0.90
Fluoranthene	20	9.3	ug/kg	0.99
Pyrene	12	9.3	ug/kg	0.93
Benzo(a) anthracene	11	9.3	ug/kg	1.2
Chrysene	13	9.3	ug/kg	1.1
Benzo(b) fluoranthene	16	9.3	ug/kg	1.4
Benzo(k)fluoranthene	6.2 J	9.3	ug/kg	1.9
Benzo(a)pyrene	11	9.3	ug/kg	0.92
Indeno(1,2,3-cd)pyrene	9.3	9.3	ug/kg	0.95
Dibenzo(a,h)anthracene	2.1 J	9.3	ug/kg	1.0
Benzo(ghi)perylene	12	9.3	ug/kg	0.92

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	56	(27 - 110)
Terphenyl-d14	41	(21 - 130)
2-Fluorobiphenyl	49	(28 - 108)
2-Fluorophenol	50	(28 - 107)
Phenol-d5	53	(30 - 112)
2,4,6-Tribromophenol	57	(21 - 116)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A4-4 (0-6)

GC/MS Semivolatiles

Date Sampled: Prep Date:	03/31/10 10:20 04/06/10	Analysis Date:	04/02/10 10:15 04/07/10	Matrix: MS Run #:	
Prep Batch #:		Analysis Time:			
Dilution Factor: % Moisture:		Initial Wgt/Vol:	_	Final Wgt/Vol:	
* MOISCARE:		Analyst ID: Method:		Instrument ID:	731
			REPORTING		

		REPURITI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	310	ug/kg	28	
Naphthalene	ND	63	ug/kg	5.4	
Acenaphthylene	45 J	63	ug/kg	7.2	
Acenaphthene	22 J	63	ug/kg	6.1	
Fluorene	25 J	63	ug/kg	8.3	
Phenanthrene	170	63	ug/kg	10	
Anthracene	60 J	63	ug/kg	6.2	
Fluoranthene	560	63	ug/kg	6.7	
Pyrene	370	63	ug/kg	6.4	
Benzo (a) anthracene	220	63	ug/kg	7.9	
Chrysene	370	63	ug/kg	7.5	
Benzo (b) fluoranthene	660 430	63	ug/kg	9.9	
Benzo(k) fluoranthene	AD 260	63	ug/kg	13	
Benzo (a) pyrene	300	63	ug/kg	6.3	
Indeno(1,2,3-cd)pyrene	280	63	ug/kg	6.5	
Dibenzo(a,h)anthracene	68	63	ug/kg	7.0	
Benzo(ghi)perylene	330	63	ug/kg	6.3	

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	44	(27 - 110)	
Terphenyl-d14	34	(21 - 130)	
2-Fluorobiphenyl	41	(28 - 108)	
2-Fluorophenol	38	(28 - 107)	
Phenol-d5	40	(30 - 112)	
2,4,6-Tribromophenol	38	(21 - 116)	

NOTE(S):

 $^{{\}bf J}$ Estimated result. Result is less than RL.

Client Sample ID: A4-5 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-055 Date Sampled: 03/31/10 10:10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 9.8 Moisture: 33		: 04/02/10 : 04/07/10 : 17:22 : 15.3 g : 003200	10:15 MS Ru Final Instra	<pre>x: SOLID n #: 0096022 Wgt/Vol.: 0.5 mL ument ID.: 731</pre>
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	490	ug/kg	44
Naphthalene	560	99	ug/kg	8.5
Acenaphthylene	580	99	ug/kg	11
Acenaphthene	240	99	ug/kg	9.4
Fluorene	230	99	ug/kg	13
Phenanthrene	2500	99	ug/kg	16
Anthracene	860	99	ug/kg	9.6
Fluoranthene	3200	99	ug/kg	11
Pyrene	1800	99	ug/kg	9.9
Benzo(a)anthracene	1100	99	ug/kg	12
Chrysene	1300	99	ug/kg	12
Benzo(b) fluoranthene	2000 JY	99	ug/kg	1.5
Benzo(k) fluoranthene	ATT 1700 IY	99	ug/kg	20
Benzo(a)pyrene	1100	99	ug/kg	9.8
Indeno(1,2,3-cd)pyrene	1100	99	ug/kg	10
Dibenzo(a,h)anthracene	190	99	ug/kg	11
Benzo(ghi)perylene	1400	99	ug/kg	9.8
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	79	(27 - 110)		
Terphenyl-d14	60	(21 - 130)		
2-Fluorobiphenyl	65	(28 - 108)		
2-Fluorophenol	75	(28 - 107)		

(30 - 112)

(21 - 116)

75

67

2,4,6-Tribromophenol NOTE(S):

Phenol-d5

Client Sample ID: A4-6 (0-6)

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	03/31/10 10:15 04/06/10 0096048	Analysis Date: Analysis Time:	04/02/10 1 04/07/10 17:47	.0:15 MS Run		0096022
		Initial Wgt/Vol:	_		Wgt/Vol:	
% Moisture:	47	Analyst ID:			ment ID:	731
		Method:	SW846 8270	C		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol		ND	310	ug/kg	28	
Naphthalene		190	62	ug/kg	5.3	
Acenaphthylene		290	62	ug/kg	7.1	
Acenaphthene		54 J	62	ug/kg	5.9	
Fluorene		ND	62	uq/kq	8.2	
Phenanthrene		740	62	ug/kg	9.8	
Anthracene		350	62	ug/kg	6.1	
Fluoranthene		1400	62	ug/kg	6.6	
Pyrene		890	62	ug/kg	6.3	
Benzo (a) anthracene	3	760	62	ug/kg	7.8	
Chrysene		1100	62	ug/kg	7.4	
Benzo (b) fluoranthe	ene :	2000 1600	62	ug/kg	9.7	
Benzo(k) fluoranthe	ene .	ND 500	62	ug/kg	13	
Benzo(a)pyrene		800	62	ug/kg	6.2	
Indeno(1,2,3-cd)py	rene	800	62	ug/kg	6.4	
Dibones/a blanthes		000			_	

62

62

ug/kg

ug/kg

6.9

6.2

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	51	(27 - 110)
Terphenyl-d14	41	(21 - 130)
2-Fluorobiphenyl	43	(28 - 108)
2-Fluorophenol	44	(28 - 107)
Phenol-d5	46	(30 - 112)
2,4,6-Tribromophenol	48	(21 - 116)

220

770

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Dibenzo(a,h)anthracene

Benzo(ghi)perylene

J Estimated result. Result is less than RL.

Client Sample ID: A4-7 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-047 Date Sampled: 03/31/10 08:3 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.98 % Moisture: 35		: 04/02/10 : 04/07/10 : 14:01 : 15.3 g : 003200	10:15 MS Ru Final Instra	x: S n #: 0 Wgt/Vol: 0 ument ID: 7	096022 .5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	50	ug/kg	4.5	
Naphthalene	16	10	ug/kg	0.87	
Acenaphthylene	11	10	ug/kg	1.2	
Acenaphthene	8.0 J	10	ug/kg	0.97	
Fluorene	7.9 J	10	ug/kg	1.3	
Phenanthrene	51	10	ug/kg	1.6	
Anthracene	1.3	10	ug/kg	0.99	
Fluoranthene	87	1.0	ug/kg	1.1	
Pyrene	69	10	ug/kg	1.0	
Benzo(a) anthracene	46	10	ug/kg	1.3	
Chrysene	64	10	ug/kg	1.2	
Benzo(b) fluoranthene	100	10	ug/kg	1.6	
Benzo(k) fluoranthene	JE 88 JY	10	ug/kg	2.0	
Benzo(a)pyrene	47	10	ug/kg	1.0	4
Indeno(1,2,3-cd)pyrene	37	10	ug/kg	1.0	
Dibenzo (a, h) anthracene	8.0 J	10	ug/kg	1.1	
Benzo(ghi)perylene	39	10	ug/kg	1.0	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	70	(27 - 110)			
Terphenyl-d14	55	(21 - 130)			
2-Fluorobiphenyl	62	(28 - 108)			
2-Fluorophenol	58	(28 - 107)			
Phenol-d5	57	(30 - 112)			
2,4,6-Tribromophenol	59	(21 - 116)			

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A4-8 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-048 Date Sampled: 03/31/10 08:35 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.99 % Moisture: 30		04/02/10 1 04/07/10 14:26 15.2 g 003200	10:15 MS Run Final Instru	Wgt/Vol.: 0.5 mL
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	47	ug/kg	4.2
Naphthalene	23	9.5	ug/kg	0.81
Acenaphthylene	35	9.5	ug/kg	1.1
Acenaphthene	8.9 J	9.5	ug/kg	0.91
Fluorene	6.0 J	9.5	ug/kg	1.2
Phenanthrene	110	9.5	ug/kg	1.5
Anthracene	38	9.5	ug/kg	0.92
Fluoranthene	260	9.5	ug/kg	1.0
Pyrene	170	9.5	ug/kg	0.95
Benzo(a)anthracene	110	9.5	ug/kg	1.2
Chrysene	180	9.5	ug/kg	1.1
Benzo (b) fluoranthene	300	9.5	ug/kg	1.5
Benzo(k)fluoranthene	260 IY	9.5	ug/kg	1.9
Benzo(a)pyrene	130	9.5	ug/kg	0.94
Indeno(1,2,3-cd)pyrene	130	9.5	ug/kg	0.97
Dibenzo(a,h)anthracene	30	9.5	ug/kg	1.0
Benzo(ghi)perylene	140	9.5	ug/kg	0.94
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	71	(27 - 110)		
Terphenyl-d14	65	(21 - 130)		
2-Fluorobiphenyl	65	(28 - 108)		
2-Fluorophenol	64	(28 - 107)		
Phenol-d5		(30 - 112)		
2,4,6-Tribromophenol	82	(21 - 116)		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FIELD DUPLICATE #6

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor: % Moisture:	03/31/10 04/06/10 0096048 2	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID Method	04/02/10 10: 04/07/10 14:50 15 g 003200	15 MS Run Final	#: Wgt/Vol: ment ID:	0096022 0.5 mL
PARAMETER		RESULT	REPORTING	NITS	MDL	

PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	97	ug/kg	8.8	
Naphthalene	11 J	20	ug/kg	1.7	
Acenaphthylene	20	20	ug/kg	2.2	
Acenaphthene	ND	20	ug/kg	1.9	
Fluorene	6.6 Ј	20	ug/kg	2.6	
Phenanthrene	87	20	ug/kg	3.1	
Anthracene	26	20	ug/kg	1.9	
Fluoranthene	230	20	ug/kg	2.1	
Pyrene	140	20	ug/kg	2.0	
Benzo (a) anthracene	81	20	ug/kg	2.5	
Chrysene	160	20	ug/kg	2.3	
Benzo (b) fluoranthene	250 TY	20	ug/kg	3.1	
Benzo(k)fluoranthene	YE DOD TY	20	ug/kg	4.0	
Benzo(a)pyrene	110	20	ug/kg	2.0	
Indeno(1,2,3-cd)pyrene	120	20	ug/kg	2.0	
Dibenzo(a,h)anthracene	29	20	ug/kg	2.2	
Benzo(ghi)perylene	120	20	ug/kg	2.0	811
•					

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	56	(27 - 110)	
Terphenyl-d14	50	(21 - 130)	
2-Fluorobiphenyl	51	(28 - 108)	
2-Fluorophenol	49	(28 - 107)	
Phenol-d5	54	(30 - 112)	
2,4,6-Tribromophenol	65	(21 - 116)	

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: A4-9 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-050 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.99 % Moisture: 36	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/07/10 15:16 15.1 g 003200	MS Run Final Instru	# Wgt/Vol:	0096022 0.5 mL
		REPORTING	•		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	51	ug/kg	4.6	
Naphthalene	ND	10	ug/kg	0.89	
Acenaphthylene	4.6 J	10	ug/kg	1.2	
Acenaphthene	ND	10	ug/kg	0.99	
Fluorene	ND	10	ug/kg	1.4	
Phenanthrene	15	10	ug/kg	1.6	
Anthracene	4.3 J	1.0	ug/kg	1.0	
Fluoranthene	25	10	ug/kg	1.1	
Pyrene	16	1.0	ug/kg	1.0	
Benzo (a) anthracene	9.8 J	10	ug/kg	1.3	
Chrysene	17	10	ug/kg	1.2	
Benzo (b) fluoranthene	27	10	ug/kg	1.6	
Benzo(k) fluoranthene	8.9 J	10	ug/kg	2.1	
Benzo(a)pyrene	14	10	ug/kg	1.0	
Indeno(1,2,3-cd)pyrene	14	10	ug/kg	1.1	
Dibenzo(a,h)anthracene	ND	10	ug/kg	1.1	
Benzo(ghi)perylene	16	1.0	ug/kg	1.0	
GTTD DOCA ME	PERCENT RECOVERY	RECOVERY LIMITS			
SURROGATE Nitrobenzene-d5	58	(27 - 110)			
Terphenyl-d14	46	(21 - 130)			
2-Fluorobiphenyl	49	(28 - 108)			
2-Fluorophenol	53	(28 - 107)			
Phenol-d5	55	(30 - 112)			
2,4,6-Tribromophenol	68	(21 - 116)			
NOTE(S):					

J Estimated result. Result is less than RL.

Client Sample ID: A4-10 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-051 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.99 % Moisture: 24	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/07/10 15:41 15.1 g 003200	MS Run Final Instru	#: Wgt/Vol: ment ID:	0096022 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	43	ug/kg	3.9	
Naphthalene	ND	8.8	ug/kg	0.75	
Acenaphthylene	ND	8.8	ug/kg	1.0	•
Acenaphthene	ND	8.8	ug/kg	0.84	
Fluorene	ND	8.8	ug/kg	1.2	
Phenanthrene	7.6 J	8.8	ug/kg	1.4	
Anthracene	ND	8.8	ug/kg	0.86	
Fluoranthene	6.6 Ј	8.8	ug/kg	0.94	
Pyrene	5.2 J	8.8	ug/kg	0.88	
Benzo (a) anthracene	ND	8.8	ug/kg	1.1	
Chrysene	ND	8.8	ug/kg	1.0	
Benzo (b) fluoranthene	3.5 J	8.8	ug/kg	1.4	
Benzo(k)fluoranthene	ND	8.8	ug/kg	1.8	
Benzo (a) pyrene	2.7 J	8.8	ug/kg	0.88	
Indeno(1,2,3-cd)pyrene	ND	8.8	ug/kg	0.90	
Dibenzo(a,h)anthracene	ND	8.8	ug/kg	0.97	
Benzo(ghi)perylene	ND	8.8	ug/kg	0.87	
GTTD DOG THE	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	59	(27 - 110)			
Terphenyl-d14	42	(21 - 130)			
2-Fluorobiphenyl	48	(28 - 108)			
2-Fluorophenol	50	(28 - 107)			
Phenol-d5	52	(30 - 112)			
2,4,6-Tribromophenol NOTE(S):	48	(21 - 116)			

J Estimated result. Result is less than RL.

Client Sample ID: A5-6 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-014 Date Sampled: 03/30/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 10 % Moisture: 42	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/06/10 18:46 15 g 003200	MS Ru Final Insti	x	: 0095277
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	400 J	570	ug/kg	52	
Naphthalene	89 J	120	ug/kg	10	
Acenaphthylene	1800	120	ug/kg	13	
Acenaphthene	130	120	ug/kg	11	
Fluorene	200	120	ug/kg	15	
Phenanthrene	350	120	ug/kg	18 11	
Anthracene	2200	1.20	ug/kg	12	
Fluoranthene	1500	120	ug/kg	12 12	
Pyrene	1700	120	ug/kg	15	
Benzo (a) anthracene	1200	1.20	ug/kg	14	
Chrysene	1700	120	ug/kg	18	
Benzo (b) fluoranthene	3300	120	ug/kg ug/kg	23	
Benzo(k)fluoranthene	1500	120	ug/kg ug/kg	12	
Benzo (a) pyrene	2300	120 120	ug/kg ug/kg	12	
Indeno(1,2,3-cd)pyrene	2400	120	ug/kg	13	
Dibenzo(a,h)anthracene	670	120 120	ug/kg	12	
Benzo(ghi)perylene	2900	120	ug/ 11g		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS	_		
Nitrobenzene-d5	68	(27 - 110)			
Terphenyl-d14	70	(21 - 130			
2-Fluorobiphenyl	75	(28 - 108			
2-Fluorophenol	63	(28 - 107			
Phenol-d5	64	(30 - 112			
2,4,6-Tribromophenol	80	(21 - 116	}		

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: FIELD DUPLICATE #3

GC/MS Semivolatiles

Lot-Sample #: C0D020489-015 Date Sampled: 03/30/10 Prep Date: 04/05/10 Prep Batch #: 0095430	Work Order #: Date Received: Analysis Date:	04/02/10 1 04/06/10	Matrix 0:15 MS Run	#	SOLID 0095277
Dilution Factor: 10	Analysis Time:				
* Moisture: 45	Initial Wgt/Vol:	-		Wgt/Vol:	
* MOISCUIE 45	Analyst ID:		Instru	ment ID:	733
	Method:	SW846 8270	С		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	530 ປັ	600	ug/kg	54	.
Naphthalene	140	120	ug/kg	10	
Acenaphthylene	2600	120	ug/kg	14	
Acenaphthene	180	120	ug/kg	12	
Fluorene	270	120	ug/kg	16	
Phenanthrene	500	120	ug/kg	19	
Anthracene	3000	120	ug/kg	12	
Fluoranthene	2200	120	ug/kg	13	
Pyrene	2500	120	ug/kg	12	
Benzo (a) anthracene	1700	120	ug/kg	15	
Chrysene	3000	120	ug/kg	14	
Benzo(b) fluoranthene	5500	120	ug/kg	19	
Benzo(k) fluoranthene	1900	120	ug/kg	25	
Benzo(a) pyrene	3600	120	ug/kg	12	
Indeno(1,2,3-cd)pyrene	3600	120	ug/kg	13	
	1100	120	ug/kg	14	
Benzo(ghi)perylene	4200	120	ug/kg	12	
	PERCENT	RECOVERY			
		LIMITS			
	68	$\frac{3271115}{(27 - 110)}$			
	73	(21 - 130)			
	79	(28 ~ 108)			
	64	(28 - 107)			
Phenol-d5	66	(30 - 112)			
2,4,6-Tribromophenol	80	(21 - 116)			
<u> </u>		-			

NOTE(S):

I Estimated result. Result is less than RL.

Client Sample ID: A5-7 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-016 Date Sampled: 03/30/10 Prep Date: 04/05/10 Prep Batch #: 0095430 Dilution Factor: 20 % Moisture: 39	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 19:32 15 g 003200	MS Run Final Instru	#: Wgt/Vol: ment ID:	0095277 0.5 mL
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
Pentachlorophenol	2100 DJ	1100	ug/kg	97	
Naphthalene	680	220	ug/kg	19	
Acenaphthylene	4600	220	ug/kg	25	
Acenaphthene	400	220	ug/kg	21	
Fluorene	530	220	ug/kg	29	
Phenanthrene	2500	220	ug/kg	35	
Anthracene	5600	220	ug/kg	21	
Fluoranthene	4500	220	ug/kg	23	
Pyrene	3400	220	ug/kg	22	
Benzo (a) anthracene	2100	220	ug/kg	27	
Chrysene	3700	220	ug/kg	26	
Benzo (b) fluoranthene	9000	220	ug/kg	34	
Benzo(k)fluoranthene	2000	220	ug/kg	44	
Benzo(a)pyrene	5600	220	ug/kg	22	
Indeno(1,2,3-cd)pyrene	7500	220	ug/kg	22	
Dibenzo(a,h)anthracene	2000	220	ug/kg	24	
Benzo(ghi)perylene	8600 ¥	220	ug/kg	22	
	PERCENT	RECOVERY			
	RECOVERY	LIMITS			
SURROGATE	NC, DIL	$\frac{117115}{(27 - 110)}$	-		
Nitrobenzene-d5	NC, DIL	(21 - 130)			
Terphenyl-d14	NC, DIL	(28 - 108)			
2-Fluorobiphenyl	NC, DIL	(28 - 107)			
2-Fluorophenol	NC, DIL	(30 - 112)			
Phenol-d5	NC, DIL	(21 - 116)			
2,4,6-Tribromophenol	HC, DID	,,			

NC The recovery and/or RPD were not calculated.

NOTE(S):

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: A6-1 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-042 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 1.96 % Moisture: 41	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/06/10 22:19 15.3 g 003200	MS l Fina Inst	rix: Run #: al Wgt/Vol: trument ID:	0096022 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	190	110	ug/kg	10	
Naphthalene	17 J	22	ug/kg	1.9	
Acenaphthylene	140	22	ug/kg	2.5	
Acenaphthene	9.4 J	22	ug/kg	2.1	
Fluorene	14 J	22	ug/kg	2.9	
Phenanthrene	68	22	ug/kg	3.5	
Anthracene	210	22	ug/kg	2.2	
Fluoranthene	190	22	ug/kg	2.4	
Pyrene	180	22	ug/kg	2.3	
Benzo (a) anthracene	120	22	ug/kg	2.8	
Chrysene	200	22	ug/kg	2.7	
Benzo (b) fluoranthene	370	22	ug/kg	3.5	
Benzo(k) fluoranthene	110	22	ug/kg	4.5	
Benzo(a)pyrene	180	22	ug/kg	2.2	
Indeno(1,2,3-cd)pyrene	230	22	ug/kg	2.3	
Dibenzo(a,h)anthracene	51	22	ug/kg	2.5	
Benzo(ghi)perylene	190	22	ug/kg	2.2	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Nitrobenzene-d5	51	(27 - 110)			
Terphenyl-d14	42	(21 - 130)			
2-Fluorobiphenyl	48	(28 - 108)			
2-Fluorophenol	46	(28 - 107)			
Phenol-d5	47	(30 - 112)			
2,4,6-Tribromophenol	48	(21 - 116)			

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: A6-2 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-043 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 2 % Moisture: 34	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID:	04/02/10 04/06/10 23:27 15 g 003200	MS Run Final Instru	#	0096022 0.5 mL
	Method:	SW846 8270	C		
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	130	100	ug/kg	9.1	
Naphthalene	8.1 J	20	ug/kg	1.8	
Acenaphthylene	1.80	20	ug/kg	2.3	
Acenaphthene	9.4 J	20	ug/kg	2.0	
Fluorene	20	.20	ug/kg	2.7	
Phenanthrene	67	20	ug/kg	3.2	
Anthracene	190	20	ug/kg	2.0	
Fluoranthene	290	20	ug/kg	2.2	
Pyrene	340	20	ug/kg	2.1	
Benzo (a) anthracene	410	20	ug/kg	2.6	
Chrysene	580	20	ug/kg	2.4	
Benzo (b) fluoranthene	1100	20	ug/kg	3.2	
Benzo(k) fluoranthene	350	20	ug/kg	4.1	
Benzo (a) pyrene	610	20	ug/kg	2.0	
Indeno(1,2,3-cd)pyrene	400	20	ug/kg	2.1	
Dibenzo (a, h) anthracene	130	20	ug/kg	2.3	
Benzo(ghi)perylene	380	20	ug/kg	2.0	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS .			
Nitrobenzene-d5	56	(27 - 110)			
Terphenyl-d14	45	(21 - 130)			
2-Fluorobiphenyl	51	(28 - 108)			
2-Fluorophenol	51	(28 - 107)			
Phenol-d5	52	(30 - 112)			
2,4,6-Tribromophenol	53	(21 - 116)			
NOTE (S):					

J Estimated result. Result is less than RL.

Client Sample ID: A6-3 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-044 Date Sampled: 03/31/10 08:15 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 4 % Moisture: 42		04/02/10 1 04/06/10 23:50 15 g 003200	0:15 MS Ru Final Instr	ix	: 0096022 : 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	230	ug/kg	21	
Naphthalene	2000	46	ug/kg	4.0	
Acenaphthylene	340	46	ug/kg	5.3	
Acenaphthene	1200	46	ug/kg	4.4	
Fluorene	990	46	ug/kg	6.1	
Phenanthrene	2100	46	ug/kg	7.3	
Anthracene	460	46	ug/kg	4.5	
Fluoranthene	1600	46	ug/kg	4.9	
Pyrene	1100	46	ug/kg	4.6	
Benzo (a) anthracene	500	46	ug/kg	5.8	
Chrysene	530	46	ug/kg	5.5	
Benzo(b) fluoranthene	1100 A AY	46	ug/kg	7.2	
Benzo(k)fluoranthene	470 IY	46	ug/kg	9.3	
Benzo(a)pyrene	560	46	ug/kg	4.6	
Indeno(1,2,3-cd)pyrene	850	46	ug/kg	4.7	
Dibenzo(a,h)anthracene	110	46	ug/kg	5.1	
Benzo(ghi)perylene	900	46	ug/kg	4.6	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	89	(27 - 110)			
Terphenyl-d14	71 .	(21 - 130)			
2-Fluorobiphenyl	88	(28 - 108)			
2-Fluorophenol	80	(28 - 107)			
Phenol-d5	81	(30 - 112)			
2,4,6-Tribromophenol	101	(21 - 116)			

Client Sample ID: A6-4 (0-6)

GC/MS Semivolatiles

	Lot-Sample #: C0D020489-045 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 2 % Moisture: 27	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/07/10 00:12 15 g 003200		MS Run Final	#: #gt/Vol: ment ID:	0096022 0.5 mL
			REPORTING				
	PARAMETER	RESULT	LIMIT	UNIT	3	MDL	
	Pentachlorophenol	ND	90	ug/kg	a 	8.1	
	Naphthalene	57	18	ug/k		1.6	
	Acenaphthylene	98	18	ug/k	-	2.1	
	Acenaphthene	19	18	ug/k	g	1.7	
	Fluorene	21	18	ug/k		2.4	
	Phenanthrene	190	18	ug/k	g	2.9	
		93	18	ug/k	g	1.8	
	Fluoranthene	340	18	ug/k	g	1.9	
1	Pyrene	230	18	ug/k	g	1.8	
	Benzo(a) anthracene	200	18	ug/k	g	2.3	
	Chrysene	260	18	ug/k	g	2.2	
	Benzo (b) fluoranthene	350	18	ug/k	g	2.9	
	Benzo(k) fluoranthene	110	18	ug/k	g	3.7	
	Benzo (a) pyrene	220	18	ug/k	g	1.8	
	Indeno (1,2,3-cd) pyrene	200	18	ug/k	g	1.9	
	Dibenzo (a, h) anthracene	42	18	ug/k	g	2.0	
	Benzo (ghi) perylene	210	18	ug/k	g	1.8	
		PERCENT	RECOVERY				
	SURROGATE	RECOVERY	LIMITS	_			
	Nitrobenzene-d5	54	(27 - 110)				
	Terphenyl-d14	50	(21 - 130)				
	2-Fluorobiphenyl	52	(28 - 108)				
	2-Fluorophenol	47	(28 - 107)				
	Phenol-d5	50	(30 - 112)				
	2,4,6-Tribromophenol	66	(21 - 116)				
	NOTE(S):						

Client Sample ID: A6-5 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-046 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.99 % Moisture: 33	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/07/10 00:34 15.2 g 003200	MS Run Final Instru	#: Wgt/Vol: ment ID:	0096022 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	49	ug/kg	4.4	
Naphthalene	5.4 J	9.9	ug/kg	0.85	
Acenaphthylene	12	9.9	ug/kg	1.1	
Acenaphthene	ND	9.9	ug/kg	0.94	•
Fluorene	ND	9.9	ug/kg	1.3	
Phenanthrene	21	9.9	ug/kg	1.6	
Anthracene	11	9.9	ug/kg	0.96	
Fluoranthene	45	9.9	ug/kg	1.1	
Pyrene	33	9.9	ug/kg	0.99	
Benzo (a) anthracene	24	9.9	ug/kg	1.2	
Chrysene	32	9.9	ug/kg	1.2	
Benzo (b) fluoranthene	51	9.9	ug/kg	1.5	
Benzo (k) fluoranthene	13	9.9	ug/kg	2.0	
Benzo (a) pyrene	30	9.9	ug/kg	0.98	
Indeno (1,2,3-cd) pyrene	28	9.9	ug/kg	1.0	
Dibenzo (a, h) anthracene	7.0 J	9.9	ug/kg	1.1	
Benzo(ghi)perylene	29	9.9	ug/kg	0.98	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	73 ·	(27 - 110)			
Terphenyl-d14	57	(21 - 130)			4
2-Fluorobiphenyl	66	(28 - 108)			
2-Fluorophenol	66	(28 - 107)			
Phenol-d5	65	(30 - 112)			
2,4,6-Tribromophenol	79	(21 - 116)			
NOTE (S):	,				·

J Estimated result. Result is less than RL.

Client Sample ID: A6-6 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-052 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.97 % Moisture: 40	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method:	04/02/10 04/07/10 16:06 15.4 g 003200	MS Run Final Instru	#	0096022 0.5 mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	54	ug/kg	4.9	
Naphthalene	28	11	ug/kg	0.94	
Acenaphthylene	79	11	ug/kg	1.2	
Acenaphthene	11	11.	ug/kg	1.0	
Fluorene	17	11	ug/kg	1.4	
Phenanthrene	59	11	ug/kg	1.7	
Anthracene	71	11	ug/kg	1.1	
Fluoranthene	110	11	ug/kg	1.2	
Pyrene	81	1.1.	ug/kg	1.1	
Benzo (a) anthracene	79	11	ug/kg	1.4	
Chrysene	130	11	ug/kg	1.3	
Benzo (b) fluoranthene	270	11	ug/kg	1.7	
Benzo(k) fluoranthene	81	11	ug/kg	2.2	
Benzo(a)pyrene	160	11	ug/kg	1.1	
Indeno(1,2,3-cd)pyrene	150	11	ug/kg	1.1	•
Dibenzo (a, h) anthracene	42	11	ug/kg	1.2	
Benzo(ghi)perylene	150	1.1	ug/kg	1.1	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	62	(27 - 110)			
Terphenyl-d14	53	(21 - 130)			
2-Fluorobiphenyl	56	(28 - 108)			
2-Fluorophenol	56	(28 - 107)			
Phenol-d5	6'0	(30 - 112)			
2,4,6-Tribromophenol	74	(21 - 116)			
NOTE (S):					

Client Sample ID: A6-7 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-053 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 1 % Moisture: 30	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/07/10 16:31 15 g 003200	MS Fi In	Run #: nal Wgt/Vol:	0096022 0.5 mL
	•	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	47	ug/kg	4.3	_
Naphthalene	43	9.6	ug/kg	0.83	
Acenaphthylene	53	9.6	ug/kg	1.1	
Acenaphthene	1.1	9.6	ug/kg	0.92	•
Fluorene	12	9.6	ug/kg	1.3	
Phenanthrene	120	9.6	ug/kg	1.5	
Anthracene	51	9.6	ug/kg	0.94	
Fluoranthene	150	9.6	ug/kg	1.0	•
Pyrene	87	9.6	ug/kg	0.97	
Benzo (a) anthracene	89	9.6	ug/kg	1.2	
Chrysene	100	9.6	ug/kg	1.1	
Benzo (b) fluoranthene	200	9.6	ug/kg	1.5	
Benzo(k) fluoranthene	71	9.6	ug/kg	1.9	
Benzo(a)pyrene	120	9.6	ug/kg	0.96	
Indeno (1,2,3-cd) pyrenė	110	9.6	ug/kg	0.99	
Dibenzo (a, h) anthracene	28	9.6	ug/kg	1.1	
Benzo(ghi)perylene	110	9.6	ug/kg	0.95	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Nitrobenzene-d5	64	(27 - 110)	•		
Terphenyl-d14	47	(21 - 130)			
2-Fluorobiphenyl	56	(28 - 108)	*		
2-Fluorophenol	55	(28 - 107)			
Phenol-d5	57	(30 - 112)			
2,4,6-Tribromophenol	43	(21 - 116)			
NOTE(S):					 ,

Client Sample ID: A6-8 (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-054 Date Sampled: 03/31/10 Prep Date: 04/06/10 Prep Batch #: 0096048 Dilution Factor: 0.99 % Moisture: 21	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Analyst ID: Method	04/02/10 04/07/10 16:56 15.1 g 003200	MS Run Final Instru	#: SOLID #: 0096022 Wgt/Vol.: 0.5 mL ment ID.: 731
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Pentachlorophenol	ND	41	ug/kg	3.7
Naphthalene	ND	8.4	ug/kg	0.72
Acenaphthylene	ND	8.4	ug/kg	0.95
Acenaphthene	ND	8.4	ug/kg	0.80
Fluorene	MD	8.4	ug/kg	1.1
Phenanthrene	6.8 J	8.4	ug/kg	1.3
Anthracene	1.3 Ј	8.4	ug/kg	0.81
Fluoranthene	5.5 J	8.4	ug/kg	0.89
Pyrene	3.8 J	8.4	ug/kg	0.84
Benzo (a) anthracene	ND	8.4	ug/kg	1.0
Chrysene	ND	8.4	ug/kg	0.99
Benzo(b) fluoranthene	2.4 J	8.4	ug/kg	1.3
Benzo(k)fluoranthene	3.5 J	8.4	ug/kg	1.7
Benzo(a)pyrene	ND	8.4	ug/kg	0.83
Indeno(1,2,3-cd)pyrene	ND	8.4	ug/kg	0.86
Dibenzo(a,h)anthracene	ND	8.4	ug/kg	0.93
Benzo(ghi)perylene	ND	8.4	ug/kg	0.83
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	55	(27 - 110)		
Terphenyl-d14	41	(21 - 130)		
2-Fluorobiphenyl	45	(28 - 108)		
2-Fluorophenol	46	(28 - 107)		
Phenol-d5	47	(30 - 112)		
2,4,6-Tribromophenol	49	(21 - 116)		
NOTE(S):				

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: NPL (0-6)

GC/MS Semivolatiles

Lot-Sample #: C0D020489-013	Work Order #:	LXGQD1AC	Matri	ĸ:	SOLID
Date Sampled: 03/29/10 16:00			10:15 MS Ru	a #	0095277
Prep Date: 04/05/10	Analysis Date:				
Prep Batch #: 0095430	Analysis Time:	18:23			
Dilution Factor: 2	Initial Wgt/Vol:	15 g	Final	Wgt/Vol:	0.5 mL
<pre>% Moisture: 36</pre>	Analyst ID:	003200		ment ID:	
	Method:	SW846 8270			
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	16 J	100	ug/kg	9.4	
Naphthalene	43	21	ug/kg	1.8	
Acenaphthylene	39	21	ug/kg	2.4	
Acenaphthene	11 J	21	ug/kg	2.0	
Fluorene	8.6 J	21	ug/kg	2.8	
Phenanthrene	190	21	ug/kg	3.3	
Anthracene	58	21	ug/kg	2.1	
Fluoranthene	290	21	ug/kg	2.2	
Pyrene	240	21	ug/kg	2.1	
Benzo(a)anthracene	140	21	ug/kg	2.6	
Chrysene	150	21	ug/kg	2.5	
Benzo(b) fluoranthene	160	21	ug/kg	3.3	
Benzo(k) fluoranthene	69	21	ug/kg	4.2	
Benzo(a)pyrene	140	21	ug/kg	2.1	* .
Indeno(1,2,3-cd)pyrene	94	21	ug/kg	2.2	
Dibenzo(a,h)anthracene	15 J	21	ug/kg	2.3	
Benzo(ghi)perylene	120	21	ug/kg	2.1	
			J. J		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	71	(27 - 110)			
Terphenyl-d14	68	(21 - 130)			
2-Fluorobiphenyl	77	(28 - 108)			
2-Fluorophenol	66	(28 - 107)			
Phenol~d5	66	(30 - 112)			

75

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

2,4,6-Tribromophenol

(21 - 116)

J Estimated result. Result is less than RL.

Client Sample ID: RB032910

GC/MS Semivolatiles

Lot-Sample #:	C0D020489-002	Work Order #:	LXGPW1AA		Matrix	-	WATER
Date Sampled:	03/29/10 17:30	Date Received:	04/02/10	10:15	MS Run	#	0095222
Prep Date:		Analysis Date:					0033822
Prep Batch #:		Analysis Time:					

Dilution Factor: 0.97 Initial Wgt/Vol: 1030 mL Final Wgt/Vol..: 1 mL

Analyst ID....: 003200 Instrument ID..: 731

	Method: SW846 8270C				
		REPORTIN	īC		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	0.97	ug/L	0.064	
Naphthalene	ND	0.19	ug/L	0.014	
Acenaphthylene	ND	0.19	ug/L	0.015	
Acenaphthene	ND	0.19	ug/L	0.014	
Fluorene	ND	0.19	ug/L	0.021	
Phenanthrene	ND	0.19	ug/L	0.041	
Anthracene	ND	0.19	ug/L	0.015	
Fluoranthene	ND	0.19	ug/L	0.016	
Pyrene	ND	0.19	ug/L	0.015	
Benzo(a)anthracene	N D	0.19	ug/L	0.014	
Chrysene	ND	0.19	ug/L	0.014	
Benzo(b) fluoranthene	ND	0.19	ug/L	0.015	
Benzo(k) fluoranthene	ND	0.19	ug/L	0.053	
Benzo(a)pyrene	ND	0.19	ug/L	0.013	
Indeno(1,2,3-cd)pyrene	ND	0.19	ug/L	0.019	
Dibenzo(a,h)anthracene	ND	0.19	ug/L	0.015	
Benzo(ghi)perylene	ND	0.19	ug/L	0.015	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	85	(23 - 11:	2)		
Terphenyl-d14	83	(10 - 13:			
2-Fluorobiphenyl	78	(19 - 10			
2-Fluorophenol	81	(10 - 11)			
Phenol-d5	83	(15 - 112			
2,4,6-Tribromophenol	86	(16 - 122			

Client Sample ID: RB033010

GC/MS Semivolatiles

Lot-Sample #:					Matrix:	WATER
Date Sampled:	03/30/10 18:00	Date Received:	04/02/10	10:15	MS Run #:	0095222
Prep Date:		Analysis Date:			•	-

Prep Batch #...: 0095331 Analysis Time..: 20:22

Dilution Factor: 1.05 Initial Wgt/Vol: 950 mL Final Wgt/Vol.: 1 mL

Analyst ID....: 003200 Instrument ID.:: 731

Method....: SW846 8270C

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL	
Pentachlorophenol	ND	1.0	ug/L	0.070	
Naphthalene	ND	0.21	ug/L	0.015	
Acenaphthylene	. ND	0.21	ug/L	0.016	
Acenaphthene	ND	0.21	ug/L	0.015	
Fluorene	ND	0.21	uq/L	0.023	
Phenanthrene	ND	0.21	ug/L	0.045	
Anthracene	ND	0.21	ug/L	0.016	
Fluoranthene	ND	0.21	ug/L	0.017	
Pyrene	ND	0.21	ug/L	0.016	
Benzo(a)anthracene	ND	0.21	ug/L	0.015	
Chrysene	ND	0.21	ug/L	0.015	
Benzo(b) fluoranthene	ND	0.21	ug/L	0.016	
Benzo(k)fluoranthene	ND	0.21	ug/L	0.057	
Benzo(a)pyrene	ND	0.21	ug/L	0.014	
Indeno(1,2,3-cd)pyrene	ND	0.21	ug/L	0.021	
Dibenzo(a,h)anthracene	ND	0.21	ug/L	0.016	
Benzo(ghi)perylene	ND	0.21	ug/L	0.016	

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	84	(23 - 112)
Terphenyl-d14	78	(10 - 132)
2-Fluorobiphenyl	71	(19 - 107)
2-Fluorophenol	76	(10 - 111)
Phenol-d5	78	(15 - 112)
2,4,6-Tribromophenol	81	(16 - 122)

Client Sample ID: RB033110

GC/MS Semivolatiles

Lot-Sample #:				Matrix:	WATER
Date Sampled:	03/31/10 12:00	Date Received:	04/02/10 10:15	MS Run #:	0095222
			• •		003322

Prep Date....: 04/05/10 Analysis Date..: 04/06/10 Prep Batch #...: 0095331 Analysis Time..: 20:46

Analysis Time..: 20:46

Dilution Factor: 0.96 Initial Wgt/Vol: 1040 mL Final Wgt/Vol..: 1 mL

Analyst ID....: 003200 Instrument ID.:: 731

Method.....: SW846 8270C

REPOR	TING
-------	------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	•
Pentachlorophenol	ND	0.96	ug/L	0.064	
Naphthalene	ND	0.19	ug/L	0.013	
Acenaphthylene	ND	0.19	ug/L	0.015	
Acenaphthene	ND	0.19	ug/L	0.014	
Fluorene	ND	0.19	ug/L	0.021	
Phenanthrene	ND	0.19	ug/L	0.041	
Anthracene	ND	0.19	ug/L	0.015	
Fluoranthene	ND	0.19	ug/L	0.016	
Pyrene	ND	0.19	ug/L	0.015	
Benzo(a)anthracene	ND	0.19	ug/L	0.014	
Chrysene	ND	0.19	ug/L	0.013	
Benzo(b) fluoranthene	ND	0.19	ug/L	0.015	
Benzo(k) fluoranthene	ND	0.19	ug/L	0.053	
Benzo(a)pyrene	ND	0.19	ug/L	0.013	
Indeno(1,2,3-cd)pyrene	ND	0.19	ug/L	0.019	
Dibenzo(a,h)anthracene	ND	0.19	ug/L	0.015	
Benzo(ghi)perylene	ND	0.19	ug/L	0.014	

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	88	(23 - 112)	
Terphenyl-d14	79	(10 - 132)	
2-Fluorobiphenyl	75	(19 - 107)	
2-Fluorophenol	80	(10 - 111)	
Phenol-d5	82	(15 - 112)	
2,4,6-Tribromophenol	85	(16 - 122)	

Client Sample ID: A1-35 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-021 Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

% Moisture....: 31

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	10.5	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:23 MS Run #: 009722	04/07-04/09/10 LXGQR1AD Analyst ID: 22952 3 MDL
Chromium	15.5 J	0.72 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:23 MS Run # 009722	04/07-04/09/10 LXGQR1AE Analyst ID: 22952 3 MDL
Copper	18.4	3.6 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:23 MS Run #: 0097223	04/07-04/09/10 LXGQR1AF Analyst ID: 22952 MDL 0.49

NOTE(S):

Client Sample ID: A1-36 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-018 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10 % Moisture....: 31

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0097431			
Arsenic	13.5	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:11 MS Run #: 009722	04/07-04/09/10 LXGQM1AD Analyst ID: 22952 3 MDL: 0.32
Chromium	19.4 5	0.72 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:11 MS Run #: 0097223	04/07-04/09/10 LXGQM1AR Analyst ID: 22952
Copper	21.3	3.6 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:11 MS Rum #: 0097223	04/07-04/09/10 LXGQM1AF Analyst ID: 22952 MDL 0.49
NOTE(S):				

Client Sample ID: A1-37 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-017 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

<pre>% Moisture</pre>	: 38		, ,	
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	9.0	1.6 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:06 MS Run #: 0097223	04/07-04/09/10 LXGQK1AD Analyst ID: 22952 8 MDL
Chromium	15.3 J	0.81 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:06 MS Run # 0097223	04/07-04/09/10 LXGQK1AE Analyst ID: 22952 MDL 0.14
Copper	17.6	4.0 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:06 MS Run # 0097223	04/07-04/09/10 LXGQK1AF Analyst ID: 22952 MDL 0.55

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: Al-38 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-019 Matrix....: SOLID

Date Received..: 04/02/10

* Moisture: 35							
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #			
Prep Batch #: 0097431							
Arsenic	9.3	1.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:15 MS Run #: 0097223	04/07-04/09/10 LXGQP1AD Analyst ID: 22952 3 MDL			
Chromium	15.8	0.77 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:15 MS Run #: 0097223	04/07-04/09/10 LXGQP1AR Analyst ID: 22952 3 MDL			
Copper	19.0	3.8 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:15 MS Run #: 0097223	04/07-04/09/10 LXGQP1AF Analyst ID: 22952 MDL 0.53			

Client Sample ID: A1-39 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-020 Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

% Moisture....: 33 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097431 Arsenic 5.2 1.5 mg/kg SW846 6010B 04/07-04/09/10 LXGQQ1AD Dilution Factor: 1 Analysis Time..: 15:19 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.33 Chromium 11.9 1 0.74 mg/kg SW846 6010B 04/07-04/09/10 LXGQQ1AE Dilution Factor: 1 Analysis Time..: 15:19 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.13 Copper 12.5 3.7 mg/kg SW846 6010B 04/07-04/09/10 LXGQQ1AF Dilution Factor: 1 Analysis Time..: 15:19 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097223 MDL..... 0.51

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A1-40 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-022 Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

* Moisture....: 41 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic 10.3 1.7 mg/kg SW846 6010B 04/07-04/09/10 LXGQT1AD Dilution Factor: 1 Analysis Time..: 16:41 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.38 Chromium 17.8 0.85 mg/kg SW846 6010B 04/07-04/09/10 LXGQTIAE Dilution Factor: 1 Analysis Time..: 16:41 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL....: 0.14 Copper 40.1 4.3 mg/kg SW846 6010B 04/07-04/09/10 LXGQT1AF Dilution Factor: 1 Analysis Time..: 16:41 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.58

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A1-41 (0-6)

TOTAL Metals

Lot-Sample #...: COD020489-023

Date Sampled...: 03/30/10 % Moisture....: 18

Date Received..: 04/02/10

Matrix....: SOLID

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	.: 0097450 11.5	1.2 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 16:45 MS Run #: 009723	04/07-04/09/10 LXGQV1AD Analyst ID: 22952 6 MDL 0.27
Chromium	19.6	0.61 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 16:45 MS Run #: 009723	04/07-04/09/10 LXGQV1AE Analyst ID: 22952 6 MDL
Copper	17.0	3.0 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:45 MS Run #: 009723	04/07-04/09/10 LXGQV1AF Analyst ID: 22952 6 MDL
NOTR(S).				

Client Sample ID: A1-42 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-024

Date Sampled...: 03/30/10

Date Received..: 04/02/10

% Moisture....: 29

	25			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097450			
Arsenic	8.7	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:36 MS Run #: 009723	04/07-04/09/10 LXGQ01AD Analyst ID: 22952 6 MDL 0.32
Chromium	17.1	0.71 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:36 MS Run #: 009723	04/07-04/09/10 LXGQ01AR Analyst ID: 22952 6 MDL: 0.12
Copper	17.9	3.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:36 MS Run #: 009723	04/07-04/09/10 LXGQ01AF Analyst ID: 22952 6 MDL 0.48
NOTE(S):				

Client Sample ID: Al-43 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-025

Date Sampled...: 03/30/10

Date Received..: 04/02/10

*** Moisture....:** 36 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic 14.8 1.6 mg/kg 04/07-04/09/10 LXGQ11AH SW846 6010B Dilution Factor: 1 Analysis Time..: 15:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.35 Chromium 21.9 0.78 mg/kg SW846 6010B 04/07-04/09/10 LXGQ11AL Dilution Factor: 1 Analysis Time..: 15:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097236 MDL..... 0.13 20.9 Copper mg/kg SW846 6010B 04/07-04/09/10 LXGQ11AP Dilution Factor: 1 Analysis Time..: 15:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.53 NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Matrix....: SOLID

Client Sample ID: Al-44 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-026

Pate Sampled 02/20/12

Date Sampled...: 03/30/10 Date Received..: 04/02/10

* Moisture....: 38

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 0097450			
Arsenic	11.6	1.6 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 16:07 MS Run #: 009723	04/07-04/09/10 LXGQ21AD Analyst ID: 22952 6 MDL
Chromium	18.6	0.80 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 16:07 MS Run # 009723	04/07-04/09/10 LXGQ21AE Analyst ID: 22952 6 MDL
Copper	12.5	4.0 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:07 MS Run #: 0097236	04/07-04/09/10 LXGQ21AF Analyst ID: 22952 MDL: 0.55

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FIRLD DUPLICATE #4

TOTAL Metals

Lot-Sample #...: C0D020489-027

Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

% Moisture....: 34

PARAMETER Prep Batch #	RESULT: 0097450	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Arsenic	14.1	1.5 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:11 MS Run #: 009723	04/07-04/09/10 LXGQ41AD Analyst ID: 22952 6 MDL 0.34
Chromium	14.5	0.76 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:11 MS Run # 0097236	04/07-04/09/10 LXGQ41AE Analyst ID: 22952 5 MDL
Copper	12.2	3.8 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:11 MS Run #: 0097236	04/07-04/09/10 LXGQ41AF Analyst ID: 22952 MDL 0.52

Client Sample ID: A1-45 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-029 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

& Moisture

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	: 0097450 12.0	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICF	SW846 6010B Analysis Time: 16:20 MS Run #: 009723	04/07-04/09/10 LXGQ71AD Analyst ID: 22952 66 MDL
Chromium	20.7	0.70 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:20 MS Run #: 009723	04/07-04/09/10 LXGQ71AE Analyst ID: 22952 6 MDL 0.12
Copper	23.4	3.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 16:20 MS Run #: 009723	04/07-04/09/10 LXGQ71AF Analyst ID: 22952 6 MDL 0.48

Client Sample ID: Al-46 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-030

Date Sampled...: 03/30/10

Date Received..: 04/02/10

% Moisture....: 40

* Moisture	: 40			
PARAMETER	RESULT	REPORTING LIMIT UNI	ITS METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 0097450			
Arsenic	6.5	1.7 mg/ Dilution Factor: 1 Instrument ID: 6	Analysis Time:	16:24 Analyst ID: 22952
Chromium	20.1	0.83 mg/ Dilution Factor: 1 Instrument ID.:: 69	Analysis Time:	
Copper	18.6	4.2 mg/ Dilution Factor: 1 Instrument ID.:: 69	Analysis Time:	•

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A1-47 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-028

Date Sampled...: 03/30/10

Date Received..: 04/02/10

*** Moisture....:** 35 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic 17.6 1.5 mg/kg 04/07-04/09/10 LXGQ51AD SW846 6010B Dilution Factor: 1 Analysis Time..: 16:15 Analyst ID....: 22952 Instrument ID. .: 6500ICP MS Run #....: 0097236 MDL..... 0.34 Chromium 18.8 1.5 mg/kg SW846 6010B 04/07-04/12/10 LXGQ51AE Dilution Factor: 2 Analysis Time..: 09:42 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097236 MDL..... 0.26 Copper 22.8 3.8 mg/kg SW846 6010B 04/07-04/09/10 LXGQ51AF Dilution Factor: 1 Analysis Time..: 16:15 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.53

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Matrix..... SOLID

Client Sample ID: A1-48 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-031 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

% Moisture.

• Porscure	: 23				
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097450				
Arsenic	8.4	1.3 Dilution Factor Instrument ID		SW846 6010B Analysis Time: 16:28 MS Run #: 009723	04/07-04/09/10 LXGQ91AD Analyst ID: 22952 36 MDL 0.29
Chromium	18.5	0.65 Dilution Facto		SW846 6010B Analysis Time: 16:28 MS Run #: 009723	04/07-04/09/10 LXGQ91AR Analyst ID: 22952 6 MDL: 0.11
Copper	23.8	3.3 Dilution Facto Instrument ID.		SW846 6010B Analysis Time: 16:28 MS Run # 009723	04/07-04/09/10 LXGQ91AF Analyst ID: 22952 6 MDL: 0.45

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A2-11 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-003 Matrix..... SOLID Date Sampled...: 03/29/10 Date Received..: 04/02/10 % Moisture....: 38 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097431 Arsenic 21.2 1.6 mg/kg SW846 6010B 04/07-04/09/10 LXGP01AD Dilution Factor: 1 Analysis Time..: 13:32 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097223 MDL..... 0.36 Chromium 48.9 3 0.81 mg/kg SW846 6010B 04/07-04/09/10 LXGP01AE Dilution Factor: 1 Analysis Time..: 13:32 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097223 MDL..... 0.14 Copper 26.8 4.0 SW846 6010B mg/kg 04/07-04/09/10 LXGP01AF

Analysis Time..: 13:32

MS Run #....: 0097223

Analyst ID....: 22952

MDL..... 0.55

Dilution Factor: 1

Instrument ID..: 6500ICP

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A2-12 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-001
Date Sampled...: 03/29/10
Date Received..: 04/02/10

% Moisture 32

* Moisture	: 32					•
PARAMETER	RESULT		REPORTI LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 00974	31				
Arsenic	44.3		1.5 Dilution Fa Instrument	mg/kg ctor: 1 ID: 6500ICP	SW846 6010B Analysis Time	
Chromium	118	エ	0.74 Dilution Fa Instrument	mg/kg ctor: 1 ID: 6500ICP	SW846 6010B Analysis Time: 0 MS Run #: 0	
Copper	32.6		3.7 Dilution Fa	mg/kg ctor: 1 ID: 6500ICP	SW846 6010B Analysis Time: 0 MS Run #: 0	•

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A2-13 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-004 Matrix..... SOLID Date Sampled...: 03/29/10 Date Received..: 04/02/10 *** Moisture....:** 29 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097431 Arsenic 12.1 1.4 mg/kg SW846 6010B 04/07-04/09/10 LXGP21AD Dilution Factor: 1 Analysis Time..: 13:36 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.32 T Chromium 17.1 mg/kg SW846 6010B 04/07-04/12/10 LXGP21AE Dilution Factor: 2 Analysis Time..: 09:33 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.24 Copper 45.8 3.5 mg/kg SW846 6010B 04/07-04/09/10 LXGP21AF

Analysis Time..: 13:36

MS Run #....: 0097223

Analyst ID....: 22952

MDL..... 0.48

Dilution Factor: 1

Instrument ID..: 6500ICP

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FIELD DUPLICATE #1

TOTAL Metals

Lot-Sample #...: C0D020489-005 Matrix....: SOLID

Date Sampled...: 03/29/10 Date Received..: 04/02/10 & Moisture

* Moisture	: 34			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #. Arsenic	12.6	1.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 13:41 MS Run #: 009722	04/07-04/09/10 LXGP31AD Analyst ID: 22952 3 MDL 0.34
Chromium	19.2 J	0.76 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 13:41 MS Run #: 009722	04/07-04/09/10 LXGP31AE Analyst ID: 22952 3 MDL: 0.13
Copper	65.0	3.8 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 13:41 MS Run #: 009722	04/07-04/09/10 LXGP31AF Analyst ID: 22952 3 MDL: 0.52
Note(s):				

Client Sample ID: A2-14 (0-6)

TOTAL Metals

Lot-Sample #. Date Sampled. % Moisture		Date Received	.: 04/02/10	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0097431			
Arsenic	14.8	1.3 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time.: 13:45 MS Run #: 00972	
Chromium	32.9 5	0.63 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 13:45 MS Run # 00972	
Copper	19.9	3.1 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 13:45 MS Run # 00972	•
NOTE(S):				

Client Sample ID: A2-15 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-007

Date Sampled...: 03/29/10

Date Received..: 04/02/10

* Moisture 29

* Moisture	: 29		
PARAMETER	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Prep Batch #.	: 0097431		
Arsenic	63.8	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP51AD Analysis Time: 13:49 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.31
Chromium	138 ゴ	0.71 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP51AB Analysis Time: 13:49 Analyst ID
Copper	36.8	3.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP51AF Analysis Time: 13:49 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.48
NOTE(S):			

Client Sample ID: A2-16 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-008

Date Sampled...: 03/29/10

Date Received..: 04/02/10

% Moisture....: 43

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097431 Arsenic 44.4 1.8 mg/kg SW846 6010B 04/07-04/09/10 LXGP61AD Dilution Factor: 1 Analysis Time..: 13:53 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #..... 0097223 MDL..... 0.39 Chromium 155 0.88 mq/kq SW846 6010B 04/07-04/09/10 LXGP61AE Dilution Factor: 1 Analysis Time..: 13:53 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.15 Copper 41.3 mg/kg SW846 6010B 04/07-04/09/10 LXGP61AF Dilution Factor: 1 Analysis Time. : 13:53 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097223 MDL..... 0.60

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A2-17 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-009 Matrix....: SOLID

Date Sampled...: 03/29/10 Date Received..: 04/02/10

% Moisture	: 40		
PARAMETER	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Prep Batch #	: 0097431		
Arsenic	25.2	1.7 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP81AH Analysis Time: 14:06 Analyst ID 22952 MS Run # 0097223 MDL 0.37
Chromium	78.3 J	0.83 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP81AL Analysis Time: 14:06 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.14
Copper	27.2	4.1 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP81AP Analysis Time: 14:06 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.57
NOTE(S):			

Client Sample ID: A2-18 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-010 Matrix..... SOLID

* Moisture	: 28		
PARAMETER	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Prep Batch #.	: 0097431		
Arsenic	13.8	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP91AD Analysis Time: 14:23 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.31
Chromium	42.4 J	0.69 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP91AE Analysis Time: 14:23 Analyst ID 22952 MS Run # 0097223 MDL 0.12
Copper	34.0	3.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGP91AF Analysis Time: 14:23 Analyst ID: 22952 MS Run #: 0097223 MDL: 0.47
NOTE(S):			

Client Sample ID: A2-19 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-011 Matrix..... SOLID

Date Sampled...: 03/29/10 Date Received..: 04/02/10

* Moisture	.: 37			
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	50.4	1.6 mg/kg	SW846 6010B	04/07-04/09/10 LXGQA1AD
		Dilution Factor: 1	Analysis Time: 14:32	Analyst ID: 22952
		Instrument ID: 6500ICP	MS Run #: 009722	3 MDL 0.35
Chromium	154 J	0.79 mg/kg	SW846 6010B	04/07-04/09/10 LXGQA1AE
		Dilution Factor: 1	Analysis Time: 14:32	Analyst ID: 22952
		Instrument ID: 6500ICP	MS Run #: 009722	3 MDL 0.13
Copper	39.0	4.0 mg/kg	SW846 6010B	04/07-04/09/10 LXGQA1AF
		Dilution Factor: 1	Analysis Time: 14:32	Analyst ID: 22952
		Instrument ID: 6500ICP	MS Run #: 009722	

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FIELD DUPLICATE #2

TOTAL Metals

Lot-Sample #...: C0D020489-012 Matrix..... SOLID

% Moisture....: 37

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	35.8	1.6 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 14:36 MS Run #: 009722	04/07-04/09/10 LXGQC1AD Analyst ID: 22952 3 MDL 0.35
Chromium	153 J	0.79 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 14:36 MS Run #: 009722	04/07-04/09/10 LXGQC1AE Analyst ID: 22952 3 MDL: 0.14
Copper	42.1	4.0 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 14:36 MS Run #: 009722	04/07-04/09/10 LXGQC1AF Analyst ID: 22952 3 MDL

NOTE(S):

Client Sample ID: A3-18 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-036 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

* Moisture....: 26

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic 6.0 1.4 mg/kg SW846 6010B 04/07-04/09/10 LXGRG1AD Dilution Factor: 1 Analysis Time..: 16:58 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097236 MDL..... 0.30 Chromium 18.1 0.68 mg/kg SW846 6010B 04/07-04/09/10 LXGRG1AE Dilution Factor: 1 Analysis Time..: 16:58 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097236 MDL..... 0.12 Copper 17.4 mg/kg SW846 6010B 04/07-04/09/10 LXGRG1AF Dilution Factor: 1 Analysis Time..: 16:58 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.46

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A3-19 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-037

Date Sampled...: 03/30/10

Date Received..: 04/02/10

Matrix....: SOLID

* Moisture.... 37

* moisture	: 37		
PARAMETER	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Prep Batch #	: 0097450		
Arsenic	14.2	1.6 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B 04/07-04/09/10 LXGRH1AD Analysis Time: 17:02 Analyst ID 22952 MS Run #: 0097236 MDL 0.36
Chromium	22.5	0.80 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B 04/07-04/09/10 LXGRH1AE Analysis Time: 17:02 Analyst ID: 22952 MS Run #: 0097236 MDL: 0.14
Copper	22.9	4.0 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGRH1AF Analysis Time: 17:02 Analyst ID: 22952 MS Run #: 0097236 MDL: 0.55
NOTE(S):			

Client Sample ID: A3-20 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-034 Matrix....: SOLID

REPORTING PREPARATION-WORK PARAMETER RESULT <u>Limit</u> UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic 11.0 1.8 mg/kg SW846 6010B 04/07-04/09/10 LXGRD1AD Dilution Factor: 1 Analysis Time..: 16:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.39 Chromium 25.4 0.88 mg/kg SW846 6010B 04/07-04/09/10 LXGRD1AE Dilution Factor: 1 Analysis Time..: 16:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.15 Copper 34.1 4.4 mg/kg SW846 6010B 04/07-04/09/10 LXGRD1AF Dilution Factor: 1 Analysis Time..: 16:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.60

Client Sample ID: FIELD DUPLICATE #5

TOTAL Metals

Lot-Sample #...: C0D020489-035

Date Sampled...: 03/30/10 Date Received..: 04/02/10

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0097450			
Arsenic	10.8	1.8 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:54 MS Run #: 009723	04/07-04/09/10 LXGRF1AD Analyst ID: 22952 MDL 0.41
Chromium	23.6	0.92 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 16:54 MS Run #: 009723	04/07-04/09/10 LXGRF1AE Analyst ID: 22952 6 MDL: 0.16
Copper	32.4	4.6 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SWB46 6010B Analysis Time: 16:54 MS Run #: 009723	04/07-04/09/10 LXGRF1AF Analyst ID: 22952 6 MDL
NOTE (S):				

Results and reporting limits have been adjusted for dry weight.

Matrix....: SOLID

Client Sample ID: A3-21 (0-6)

TOTAL Metals

Lot-Sample #...: CODO20489-040 Matrix.....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

PARAMETER	DEGTT M	REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNI	rs <u>method</u>	ANALYSIS DATE ORDER #
Prep Batch #	: 0097450			
Arsenic	43.2	1.6 mg/	kg SW846 6010B	04/07-04/09/10 LXGRN1AD
		Dilution Factor: 1	Analysis Time: 1	
		Instrument ID: 65	00ICP MS Run # 0	
Chromium	53.4	0.78 mg/	rg SW846 6010B	04/07-04/09/10 LXGRN1AE
	•	Dilution Factor: 1	Analysis Time: 1	
		Instrument ID: 65	00ICP MS Run #: 0	
Copper	40.0	3.9 mg/l	rg SW846 6010B	04/07-04/09/10 LXGRN1AF
		Dilution Factor: 1	Analysis Time: 1	
		Instrument ID: 65		<u>-</u>

Client Sample ID: A3-22 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-039 Matrix....: SOLID Date Sampled...: 03/30/10

Date Sampled & Moisture	: 03/30/10 : 59	Date Received	: 04/02/10	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	: 0097450 9.9	2.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 17:11 MS Run #: 00972	· · · · · · · · · · · · · · · · · · ·
Chromium	26.7	1.2 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 17:11 MS Run #: 00972	•
Copper	41.7	6.1 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 17:11 MS Run #: 00972:	
NOTE(S):				

Client Sample ID: A3-23 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-038 Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

*** Moisture....:** 38 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097450 Arsenic · 14.1 1.6 mg/kg SW846 6010B 04/07-04/09/10 LXGRK1AD Dilution Factor: 1 Analysis Time..: 17:07 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097236 MDL..... 0.36 Chromium 21.6 0.80 mg/kg SW846 6010B 04/07-04/09/10 LXGRKLAE Dilution Factor: 1 Analysis Time..: 17:07 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097236 MDL..... 0.14 Copper 21.9 4.0 mg/kg SW846 6010B 04/07-04/09/10 LXGRK1AF Dilution Factor: 1 Analysis Time..: 17:07 Analyst ID....: 22952 MS Run #.....: 0097236 Instrument ID. .: 6500ICP MDL..... 0.55

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A3-24 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-041 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

* Moisture	.: 48			
PARAMETER	RESULT	REPORTING LIMIT UNITS	метнор	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	-: 0097450			
Arsenic	19.0	1.9 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 17:20 MS Run #: 0097236	04/07-04/09/10 LXGRP1AD Analyst ID: 22952 6 MDL
Chromium	41.1	0.96 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 17:20 MS Run # 0097236	04/07-04/09/10 LXGRP1AR Analyst ID: 22952 5 MDL
Copper	28.0	4.8 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 17:20 MS Run #: 0097236	04/07-04/09/10 LXGRP1AF Analyst ID: 22952 MDL 0.66

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A4-1 (0-6)

TOTAL Metals

Lot-Sample # Date Sampled % Moisture	: 03/31/10		Received	: 04/02/10	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451				
Arsenic	8.3	1.5 Dilution Factor Instrument ID		SW846 6010B Analysis Time: 19:20 MS Run #: 009723	•
Chromium	60.5	0.75 Dilution Facto		SW846 6010B Analysis Time: 19:20 MS Run #: 009723	04/07-04/09/10 LXGTL1AR Analyst ID: 22952 7 MDL: 0.13
Copper	27.1	3.7 Dilution Facto Instrument ID.		SW846 6010B Analysis Time: 19:20 MS Run #: 009723	04/07-04/09/10 LXGTL1AF Analyst ID: 22952 7 MDL: 0.51

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A4-2 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-059 Matrix....: SOLID

% Moisture....: 29

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451				
Arsenic	10.5	1.4	mg/kg	SW846 6010B	04/07-04/09/10 LXGTM1AD
		Dilution Facto	or: 1	Analysis Time: 19:2	
		Instrument ID.	.: 6500ICP	MS Run #: 0097	
Chromium	21.0	0.71	mg/kg	SW846 6010B	04/07-04/09/10 LXGTMLAR
		Dilution Facto	r: 1	Analysis Time: 19:2	5 Analyst ID: 22952
		Instrument ID.	.: 6500ICP	MS Run #: 0097	237 MDL 0.12
Copper	38.1	3.5	mg/kg	SW846 6010B	04/07-04/09/10 LXGTMLAF
		Dilution Facto	r: 1	Analysis Time: 19:2	
		Instrument ID.	.: 6500ICP	MS Run #: 0097	——————————————————————————————————————

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A4-3 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-060 Matrix....: SOLID

Date Sampled...: 03/31/10 Date Received..: 04/02/10

% Moisture	: 28		
PARAMETER	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Prep Batch #	: 0097451		
Arsenic	11.9	1.4 mg/kg Dilution Factor: 1 Instrumént ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGTN1AD Analysis Time: 19:29 Analyst ID: 22952 MS Run #: 0097237 MDL 0.31
Chromium	20.6	0.69 mg/kg Dilution Factor: 1 Instrument ID; 6500ICP	SW846 6010B 04/07-04/09/10 LXGTN1AK Analysis Time 19:29 Analyst ID 22952 MS Run # 0097237 MDL 0.12
Copper	20.7	3.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGTN1AF Analysis Time: 19:29 Analyst ID: 22952 MS Run #: 0097237 MDL: 0.47
NOTE(S):			

Client Sample ID: A4-4 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-057 Matrix..... SOLID **Date Sampled...:** 03/31/10 Date Received..: 04/02/10

% Moisture....: 48

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097451 Arsenic 7.0 1.9 mg/kg SW846 6010B 04/07-04/09/10 LXGTK1AD Dilution Factor: 1 Analysis Time.:: 19:16 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.43 Chromium 20.6 0.97 mg/kg SW846 6010B 04/07-04/09/10 LXGTKLAE Analysis Time..: 19:16 Dilution Factor: 1 Analyst ID....: 22952 MS Run #....: 0097237 Instrument ID..: 6500ICP MDL..... 0.16 Copper 36.8 4.8 mg/kg SW846 6010B 04/07-04/09/10 LXGTK1AF Dilution Factor: 1 Analysis Time..: 19:16 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL..... 0.66

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A4-5 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-055 Matrix....: SOLID

Date Sampled...: 03/31/10 Date Received..: 04/02/10

% Moisture....: 33

* moisture	.: 33				
PARAMETER	RESULT	REPORTING LIMIT I	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451				
Arsenic .	11.4	1.5 Instrument ID		SW846 6010B Analysis Time: 18:59 MS Run #: 0097233	04/07-04/09/10 LXGTG1AD Analyst ID: 22952 MDL 0.34
Chromium	23.9	0.75 Dilution Factor:		SW846 6010B Analysis Time: 18:59 MS Run #: 0097237	04/07-04/09/10 LXGTG1AE Analyst ID: 22952 MDL
Copper	128	3.8 m Dilution Factor: Instrument ID:	_	SW846 6010B Analysis Time: 18:59 MS Run #: 0097237	04/07-04/09/10 LXGTG1AF Analyst ID: 22952 MDL 0.51

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A4-6 (0-6)

TOTAL Metals

	COD020489 : 03/31/10 : 47	Date Received	: 04/02/10	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	13.0	1.9 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 19:0 MS Run #: 0097	-
Chromium	28.2	0.94 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 19:00	•
Copper	46.7	4.7 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 19:03 MS Run #: 00972	
Note (S) :				

Client Sample ID: A4-7 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-047

Date Sampled...: 03/31/10

**Moisture....: 35

Matrix....: SOLID

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0097451				
Arsenic	9.3	1.5 Dilution Factor Instrument ID.		SW846 6010B Analysis Time: 17:50 MS Run #: 00972	1 2
Chromium	18.0	0.77 Dilution Factor Instrument ID.		SW846 6010B Analysis Time: 17:50 MS Run #: 00972	
Copper	21.9	3.9 Dilution Factor Instrument ID		SW846 6010B Analysis Time: 17:50 MS Run #: 00972	•

Client Sample ID: A4-8 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-048 Matrix....: SOLID Date Sampled...: 03/31/10 Date Received..: 04/02/10 **% Moisture....:** 30 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097451 Arsenic 7.1 1.4 mg/kg SW846 6010B 04/07-04/09/10 LXGR51AD Dilution Factor: 1 Analysis Time..: 17:54 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL..... 0.32 Chromium 18.2 0.71 mq/kq SW846 6010B 04/07-04/09/10 LXGR51AE Dilution Factor: 1 Analysis Time..: 17:54 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL..... 0.12 Copper 24.6 3.6 mg/kg SW846 6010B 04/07-04/09/10 LXGR51AF Dilution Factor: 1 Analysis Time..: 17:54 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL.... 0.49

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: FIRLD DUPLICATE #6

TOTAL Metals

Lot-Sample #...: C0D020489-049

Date Sampled...: 03/31/10 Date Received..: 04/02/10

		DEDARKTAG		
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	6.7	1.5 mg/kg	SW846 6010B	04/07-04/09/10 LXGR71AD
		Dilution Factor: 1	Analysis Time: 17:59	Analyst ID: 22952
•		Instrument ID: 6500ICP	MS Run #: 009723	
Chromium	18.9	0.74 mg/kg	SW846 6010B	04/07-04/09/10 LXGR71AE
		Dilution Factor: 1	Analysis Time: 17:59	Analyst ID: 22952
		Instrument ID: 6500ICP	MS Run #: 009723	
Copper	23.8	3.7 mg/kg	SW846 6010B	04/07-04/09/10 LXGR71AF
		Dilution Factor: 1	Analysis Time: 17:59	Analyst ID: 22952
		Instrument ID: 6500ICP	MS Run #: 009723	

Results and reporting limits have been adjusted for dry weight.

Matrix....: SOLID

Client Sample ID: A4-9 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-050 Matrix....: SOLID Date Sampled...: 03/31/10 Date Received..: 04/02/10 * Moisture....: 36 REPORTING PREPARATION-WORK PARAMETER RESULT METHOD LIMIT UNITS ANALYSIS DATE ORDER # Prep Batch #...: 0097451

Arsenic 8.4 1.6 mq/kq SW846 6010B 04/07-04/09/10 LXGR81AD Dilution Factor: 1 Analysis Time..: 18:03 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.35

0.78

04/07-04/09/10 LXGR81AE Dilution Factor: 1 Analysis Time..: 18:03 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.13

SW846 6010B

mg/kg

Copper 22.9 3.9 SW846 6010B mg/kg 04/07-04/09/10 LXGR81AF Dilution Factor: 1 Analysis Time..: 18:03 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.53

NOTE(S):

Chromium

Results and reporting limits have been adjusted for dry weight.

19.6

Client Sample ID: A4-10 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-051 Matrix....: SOLID

Date Sampled...: 03/31/10 Date Received..: 04/02/10

		REPORTING	77	
PARAMETER	RESULT	LIMIT UNITS		EPARATION- WORK ALYSIS DATE ORDER #
				OLDER II
Prep Batch #.	: 0097451			
Arsenic	12.8	1.3 mg/kg	SW846 6010B 04	/07-04/09/10 LXGR91AD
		Dilution Factor: 1		Analyst ID: 22952
		Instrument ID: 6500ICE		MDL 0.30
Chronium	15.0	0.66 mg/kg	SW846 6010B 04	/07-04/09/10 LXGR91AE
		Dilution Factor: 1		Analyst ID: 22952
		Instrument ID: 6500ICE		MDL 0.11
Copper	16.7	3.3 mg/kg	SW846 6010B 04	/07-04/09/10 LXGR91AF
		Dilution Factor: 1		Analyst ID: 22952
			MS Run #: 0097237	mmay30 1D 22932

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A5-6 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-014 Matrix....: SOLID Date Sampled...: 03/30/10 Date Received..: 04/02/10

* Moisture 42

* MOISCUIE: 42				
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	6.5	1.7 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 14:45 MS Run #: 009722	04/07-04/09/10 LXGQF1AD Analyst ID: 22952 3 MDL 0.39
Chromium	20.2 J	0.87 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 14:45 MS Run # 0097223	04/07-04/09/10 LXGQF1AE Analyst ID: 22952 MDL
Copper	24.3	4.3 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 14:45 MS Run #: 0097223	04/07-04/09/10 LXGQF1AF Analyst ID: 22952 MDL

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: FIELD DUPLICATE #3

TOTAL Metals

Lot-Sample #...: C0D020489-015 Matrix....: SOLID

Date Sampled...: 03/30/10 Date Received..: 04/02/10

% Moisture....: 45

* Moisture	: 45			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	6.4	1.8 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 14:58 MS Run #: 009722	04/07-04/09/10 LXGQG1AD Analyst ID: 22952 3 MDL
Chromium	21.2 5	0.91 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 14:58 MS Run #: 009722	04/07-04/09/10 LXGQG1AE Analyst ID: 22952 3 MDL
Copper	26.8	4.6 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SWB46 6010B Analysis Time: 14:58 MS Run #: 009722	04/07-04/09/10 LXGQG1AF Analyst ID: 22952 3 MDL 0.62

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: A5-7 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-016

Date Sampled...: 03/30/10

Date Received..: 04/02/10

Matrix....: SOLID

% Moisture....: 39

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	10.4	1.6 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 15:02 MS Run #: 009722	04/07-04/09/10 LXGOHIAD Analyst ID: 22952 3 MDL 0.36
Chromium	21.9 5	0.81 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:02 MS Run #: 009722	04/07-04/09/10 LXGQH1AE Analyst ID: 22952 3 MDL
Copper	26.8	4.1 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 15:02 MS Run # 009722:	04/07-04/09/10 LXGQH1AF Analyst ID: 22952 3 MDL
NOTE(S):				

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A6-1 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-042
Date Sampled...: 03/31/10
Date Received..: 04/02/10

*** Moisture....:** 41

·	••• 41			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	7.4	1.7 mg/kg Dilution Factor: 1 Instrument ID: 650010	SW846 6010B Analysis Time: 18:12 CP MS Run #: 009723	04/07-04/09/10 LXGRQ1AH Analyst ID: 22952 7 MDL: 0.38
Chromium	15.4	0.85 mg/kg Dilution Factor: 1 Instrument ID: 650010	SW846 6010B Analysis Time: 18:12 CP MS Run #: 009723	04/07-04/09/10 LXGRQ1AL Analyst ID: 22952 7 MDL: 0.14
Copper	16.2	4.3 mg/kg Dilution Factor: 1 Instrument ID.:: 650010	SW846 6010B Analysis Time: 18:12 CP MS Run #: 009723	04/07-04/09/10 LXGRQ1AP Analyst ID: 22952 7 MDL 0.58

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: A6-2 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-043

Date Sampled...: 03/31/10

Date Received..: 04/02/10

% Moisture	: 34		•	
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	11.9	1.5 mg/kg Dilution Factor: 1 Instrument ID: 65001CP	SW846 6010B Analysis Time: 18:37 MS Run #: 009723	04/07-04/09/10 LXGRV1AD Analyst ID: 22952 7 MDL: 0.34
Chromium	15.1	0.76 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 18:37 MS Run #: 009723	04/07-04/09/10 LXGRV1AE Analyst ID: 22952 7 MDL: 0.13
Copper	15.6	3.8 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 18:37 MS Run #: 009723	04/07-04/09/10 LXGRV1AF Analyst ID: 22952 7 MDL
NOTE(S):				

Results and reporting limits have been adjusted for dry weight.

Matrix....: SOLID

Client Sample ID: A6-3 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-044 Matrix..... SOLID Date Sampled...: 03/31/10 Date Received..: 04/02/10 * Moisture....: 42 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097451 Arsenic 16.5 1.7 mg/kg SW846 6010B 04/07-04/09/10 LXGRX1AD Dilution Factor: 1 Analysis Time..: 18:42 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL..... 0.38 Chromium 22.2 0.86 mg/kg SW846 6010B 04/07-04/09/10 LXGRX1AR Dilution Factor: 1 Analysis Time..: 18:42 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #....: 0097237 MDL..... 0.15 Copper 31.2 4.3 mg/kg SW846 6010B 04/07-04/09/10 LXGRX1AF Dilution Factor: 1 Analysis Time..: 18:42 Analyst ID....: 22952 Instrument ID. .: 6500ICP MS Run #....: 0097237

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

MDL..... 0.59

Client Sample ID: A6-4 (0-6)

TOTAL Metals

Lot~Sample #...: C0D020489-045 Matrix....: SOLID Date Sampled...: 03/31/10

Date Received..: 04/02/10 *** Moisture....:** 27

	•••• 21			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0097451			
Arsenic	8.2	1.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 17:41 MS Run #: 009723	04/07-04/09/10 LXGR11AD Analyst ID: 22952 7 MDL: 0.30
Chromium	19.0	0.68 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B Analysis Time: 17:41 MS Run #: 009723	04/07-04/09/10 LXGR11AE Analyst ID: 22952 7 MDL: 0.12
Copper	38.2	3.4 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B Analysis Time: 17:41 MS Run #: 009723	04/07-04/09/10 LXGR11AF Analyst ID: 22952 7 MDL

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A6-5 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-046

Date Sampled...: 03/31/10

Date Received..: 04/02/10

% Moisture....: 33

· wordedte	33		
PARAMETER Prep Batch #	RESULT	REPORTING LIMIT UNITS	PREPARATION- WORK METHOD ANALYSIS DATE ORDER #
Arsenic	8.0	1.5 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGR21AI Analysis Time: 17:46 Analyst ID: 22952 MS Run #: 0097237 MDL: 0.33
Chromium	14.7	0.74 mg/kg Dilution Factor: 1 Instrument ID.:: 6500ICP	SW846 6010B 04/07-04/09/10 LXGR21AF Analysis Time: 17:46 Analyst ID: 22952 MS Run #: 0097237 MDL: 0.13
Copper	17.2	3.7 mg/kg Dilution Factor: 1 Instrument ID: 6500ICP	SW846 6010B 04/07-04/09/10 LXGR21AF Analysis Time: 17:46 Analyst ID: 22952 MS Run #: 0097237 MDL 0.51
NOTE(S):			

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: A6-6 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-052

Date Sampled...: 03/31/10

% Moisture....: 40

Date Received..: 04/02/10

Matrix....: SOLID

PARAMETER	RESULT	REPORTING LIMIT UNI	TS METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	21.5	1.7 mg/ Dilution Factor: 1 Instrument ID.:: 65	Analysis Time:	18:46 Analyst ID: 22952
Chromium	19.5	0.84 mg/TDilution Factor: 1 Instrument ID.:: 65	Analysis Time:	18:46 Analyst ID: 22952

mg/kg SW846 6010B

04/07-04/09/10 LXGTA1AF

4.2 Dilution Factor: 1 Analysis Time..: 18:46 Analyst ID....: 22952

NOTE (S):

Copper

Results and reporting limits have been adjusted for dry weight.

24.0

Client Sample ID: A6-7 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-053 Matrix....: SOLID Date Sampled...: 03/31/10 Date Received..: 04/02/10

% Moisture....: 30 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0097451 Arsenic 8.5 1.4 mg/kg SW846 6010B 04/07-04/09/10 LXGTC1AD Dilution Factor: 1 Analysis Time..: 18:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.32 Chromium 16.8 0.72 mg/kg SW846 6010B 04/07-04/09/10 LXGTC1AE Dilution Factor: 1 Analysis Time..: 18:50 Analyst ID....: 22952 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.12 Copper 23.6 3.6 mg/kg SW846 6010B 04/07-04/09/10 LXGTC1AF Dilution Factor: 1 Analyst ID....: 22952 Analysis Time..: 18:50 Instrument ID..: 6500ICP MS Run #.....: 0097237 MDL..... 0.49

Results and reporting limits have been adjusted for dry weight.

NOTE(S):

Client Sample ID: A6-8 (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-054 Matrix....: SOLID

REPORTING PREPARATION- WORK

PARAMETER	RESULT	LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097451			
Arsenic	10.4	1.3 mg/kg Dilution Factor: 1 Instrument ID: 6500IC	SW846 6010B Analysis Time: 18:54 P MS Run #: 00972:	
Chromium	15.0	0.63 mg/kg Dilution Factor: 1 Instrument ID.:: 6500IC	SW846 6010B Analysis Time: 18:54 P MS Run #: 00972	04/07-04/09/10 LXGTE1AE Analyst ID: 22952 MDL: 0.11
Copper	15.3	3.2 mg/kg Dilution Factor: 1 Instrument ID: 6500IC	SW846 6010B Analysis Time: 18:54 MS Run #: 009723	04/07-04/09/10 LXGTR1AF Analyst ID: 22952 37 MDL

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: NPL (0-6)

TOTAL Metals

Lot-Sample #...: C0D020489-013 Matrix....: SOLID

Date Sampled...: 03/29/10 *** Moisture** • 36 Date Received..: 04/02/10

* Moisture	: 36			
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097431			
Arsenic	9.6	1.6 mg/kg Dilution Factor: 1 Instrument ID.:: 65001	SW846 6010B Analysis Time: 14:40 CP MS Run #: 009722	04/07~04/09/10 LXGQD1AD Analyst ID: 22952 3 MDL
Chromium	12.9 5	0.79 mg/kg Dilution Factor: 1 Instrument ID.:: 650010	SW846 6010B Analysis Time: 14:40 CP MS Run #: 009722	04/07-04/09/10 LXGQD1AE Analyst ID: 22952 3 MDL
Copper	21.8	3.9 mg/kg Dilution Factor: 1 Instrument ID: 650010	SW846 6010B Analysis Time: 14:40 CP MS Run #; 009722.	04/07-04/09/10 LXGQD1AF Analyst ID: 22952 3 MDL

NOTE(S): Results and reporting limits have been adjusted for dry weight.

Client Sample ID: RB032910

TOTAL Metals

	: C0D02048 l: 03/29/10		: 04/02/10	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Arsenic	: 0097428 2.8 B	10.0 ug/L Dilution Factor: 1 Instrument ID.:: TRACEICP	SW846 6010B Analysis Time: 22:5 MS Run #: 0097	1
Chromium	ND	5.0 ug/L Dilution Factor: 1 Instrument ID: TRACEICP	SW846 6010B Analysis Time: 22:5 MS Run # 0097	
Copper	ND	25.0 ug/L Dilution Factor: 1 Instrument ID.:: TRACEICP	SW846 6010B Analysis Time: 22:52 MS Run #: 00972	-
NOTE(S):				

B Estimated result. Result is less than RL.

Client Sample ID: RB033010

TOTAL Metals

Lot-Sample # Date Sampled			ed: 04/02/10	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	S METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 0097428			
Arsenic	ND	10.0 ug/L Dilution Factor: 1 Instrument ID.:: TRAC	Analysis Time: 22:57	
Chromium	ND	5.0 ug/L Dilution Factor: 1 Instrument ID: TRAC	SW846 6010B Analysis Time: 22:57 EEICP MS Run #: 009723	2
Copper	ND	25.0 ug/L Dilution Factor: 1 Instrument ID.:: TRAC	SW846 6010B Analysis Time: 22:57 EICP MS Run #: 009721	

Client Sample ID: RB033110

TOTAL Metals

Lot-Sample # Date Sampled		Date Received	: 04/02/10	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 0097428			
Arsenic	ND	10.0 ug/L Dilution Factor: 1 Instrument ID: TRACEICE	SW846 6010B Analysis Time: 23:03 MS Run #: 009721	04/07-04/09/10 LXGRC1AC Analyst ID: 403938 9 MDL: 2.7
Chromium	ND	5.0 ug/L Dilution Factor: 1 Instrument ID: TRACEICE	SW846 6010B Analysis Time: 23:03 MS Run #: 009721	04/07-04/09/10 LXGRC1AD Analyst ID: 403938 9 MDL: 0.57

ug/L

SW846 6010B

Instrument ID..: TRACEICP MS Run #.....: 0097219 MDL...... 2.7

04/07-04/09/10 LXGRC1AE

Analysis Time..: 23:03 Analyst ID....: 403938

Copper

ND

25.0

Dilution Factor: 1

Carbondale, Illinois

TOC

Lab Name:

TESTAMERICA PITTSBURGH

Method:

MSA

WALKLEY-B

Client Name:

ARCADIS U.S., Inc.

Lot Number:

C0D020489

Matrix:

SOLID

Carbon, Total Organic "TOC" Walkley Solids

Client Sample ID	Sample Number	Workorder	Result	Units	Method Detection Limit	Reporting Limit	Dilution Factor	Prep Date - Analysis Date/Time	QC Batch
A2-12 (0-6)	C0D020489 001	LXGPP1AG	20800	mg/kg	99.0	369	1	4/7/2010 - 4/7/2010 12:35	0097268
A2-11 (0-6)	C0D020489 003	LXGP01AG	21700	mg/kg	108	403	1	4/7/2010 - 4/7/2010 12:35	0097268
A2-19 (0-6)	C0D020489 011	LXGQA1AG	31600	mg/kg	106	396	1	4/7/2010 - 4/7/2010 12:35	0097268
FIELD DUPLICATE #2	C0D020489 012	LXGQC1AG	35000	mg/kg	108	397	1	4/7/2010 - 4/7/2010 12:35	0097268
A5-8 (0-6)	C0D020489 014	LXGQF1AG	28400	mg/kg	116	435	1	4/7/2010 - 4/7/2010 12:35	0097268
FIELD DUPLICATE #3	C0D020489 015	LXGQG1AG	27700	mg/kg	122	456	1	4/7/2010 - 4/7/2010 12:35	0097268
A5-7 (0-6)	C0D020489 016	LXGQH1AG	27100	mg/kg	109	407	1	4/7/2010 - 4/7/2010 12:35	0097268
A1-43 (0-6)	C0D020489 025	LXGQ11AT	8960	mg/kg	105	391	1	4/7/2010 - 4/7/2010 12:35	0097268
A1-44 (0-6)	C0D020489 026	LXGQ21AG	24300	mg/kg	108	402	1	4/7/2010 - 4/7/2010 12:35	0097268
FIELD DUPLICATE #4	C0D020489 027	LXGQ41AG	17400	mg/kg	101	378	1	4/7/2010 - 4/7/2010 12:35	0097268
A1-47 (0-8)	C0D020489 028	LXGQ51AG	13700	mg/kg	103	384	1	4/7/2010 - 4/7/2010 12:35	0097268
A1-46 (0-6)	C0D020489 030	LXGQ81AG	23600	mg/kg	111	415	1	4/7/2010 - 4/7/2010 12:35	0097268
A1-48 (0-8)	C0D020489 031	LXGQ91AG	9500	mg/kg	87.2	325	1	4/7/2010 - 4/7/2010 12:35	0097268
A3-20 (0-6)	C0D020489 034	LXGRD1AG	28200	mg/kg	118	441	1	4/7/2010 - 4/7/2010 12:35	0097268
FIELD DUPLICATE #5	C0D020489 035	LXGRF1AG	34900	mg/kg	124	461	1	4/7/2010 - 4/7/2010 12:35	0097268
A3-18 (0-6)	C0D020489 036	LXGRG1AG	5470	mg/kg	91.1	340	1	4/7/2010 - 4/7/2010 12:35	0097268
A3-19 (0-8)	C0D020489 037	LXGRH1AG	16400	mg/kg	107	399	1	4/7/2010 - 4/7/2010 12:35	0097268
A3-23 (0-6)	C0D020489 038	LXGRK1AG	26200	mg/kg	108	402	1	4/7/2010 - 4/7/2010 12:35	0097268

TESTAMERICA PITTSBURGH

General Chemistry results by parameter

Carbondale, Illinois

TOC

Lab Name:

TESTAMERICA PITTSBURGH

Method:

MSA

WALKLEY-B

Client Name:

ARCADIS U.S., Inc.

Lot Number:

C0D020489

Matrix: SOLID

A3-22 (0-8)	C0D020489 039	LXGRM1AG	64700	mg/kg	184	614	1	4/7/2010 - 4/7/2010 12	2:35	0097268
A3-21 (0-6)	C0D020489 040	LXGRN1AG	41000	mg/kg	105	391	1	4/7/2010 - 4/7/2010 12		0097268
A3-24 (0-6)	C0D020489 041	LXGRP1AG	45800	mg/kg	129	482	1	4/7/2010 - 4/7/2010 13	:40	0097269
A6-1 (0-6)	C0D020489 042	LXGRQ1AT	24900	mg/kg	114	426	1	4/7/2010 - 4/7/2010 13		0097269
A6-2 (0-6)	C0D020489 043	LXGRV1AG	15300	mg/kg	102	382	1	4/7/2010 - 4/7/2010 13		0097269
A6-3 (0-6)	C0D020489 044	LXGRX1AG	20300	mg/kg	115	430	1	4/7/2010 - 4/7/2010 13	:40	0097269
A6-5 (0-8)	C0D020489 046	LXGR21AG	13300	mg/kg	99.8	372	1	4/7/2010 - 4/7/2010 13	:40	0097269
A4-7 (0-6)	C0D020489 047	LXGR31AG	13900	mg/kg	103	386	1	4/7/2010 - 4/7/2010 13	i	0097269
A6-6 (0-6)	C0D020489 052	LXGTA1AG	12800	mg/kg	113	420	1	4/7/2010 - 4/7/2010 13	:40	0097269
A4-6 (0-8)	C0D020489 056	ŁXGTJ1AG	83300	mg/kg	573	2140	4.55	4/7/2010 - 4/7/2010 13	:40	0097269
A4-4 (0-8)	C0D020489 057	LXGTK1AG	34100	mg/kg	129	483	1	4/7/2010 - 4/7/2010 13	40	0097269
N4-1 (0-6)	C0D020489 058	LXGTL1AG	15400	mg/kg	99.9	373	1	4/7/2010 - 4/7/2010 13	40	0097269

Carbondale, Illinois

TOC

Lab Name:

TESTAMERICA PITTSBURGH

Method:

SW846

9060

Client Name:

ARCADIS U.S., Inc.

Lot Number:

C0D020489

Matrix:

WATER

Total Organic Carbon

Client Sample ID	Sample Number	Workorder	Result	Units	Method Detection Limit	Reporting Limit	Dilution Factor	Prep Date - Analysis Date/Time	QC Batch
RB032910	C0D020489 002	LXGPW1AF	ND	mg/L	0.19	1.0	1	4/8/2010 - 4/8/2010 18:28	0098269
R8033010	C0D020489 032	LXGRA1AF	ND	mg/L	0.19	1.0	1	4/8/2010 - 4/8/2010 18:36	0098269
RB033110	C0D020489 033	LXGRC1AF	ND	mg/L	0.19	1.0	1	4/8/2010 - 4/8/2010 18:44	0098269